Plasma Chemistry and Plasma Processing

, Volume 33, Issue 1, pp 165–175 | Cite as

Surface Modification of Poly-ε-Caprolactone with an Atmospheric Pressure Plasma Jet

  • N. De GeyterEmail author
  • A. Sarani
  • T. Jacobs
  • A. Yu. Nikiforov
  • T. Desmet
  • P. Dubruel
Original Paper


In this work, poly-ε-caprolactone samples are modified by an atmospheric pressure plasma jet in pure argon and argon/water vapour mixtures. In a first part of the paper, the chemical species present in the plasma jet are identified by optical emission spectroscopy and it was found that plasmas generated in argon/0.05 % water vapour mixtures show the highest emission intensity of OH (A–X) at 308 nm. In a subsequent section, plasma jet surface treatments in argon and argon/water vapour mixtures have been investigated using contact angle measurements and X-ray photoelectron spectroscopy. The polymer samples modified with the plasma jet show a significant decrease in water contact angle due to the incorporation of oxygen-containing groups, such as C–O, C=O and O–C=O. The most efficient oxygen inclusion was however found when 0.05 % of water vapour is added to the argon feeding gas, which correlates with the highest intensity of OH (X) radicals. By optimizing the OH (X) radical yield in the plasma jet, the highest polymer modification efficiency can thus be obtained.


Atmospheric pressure plasma jet Poly-ε-caprolactone Water vapour Contact angle X-ray photoelectron spectroscopy Optical emission spectroscopy 


  1. 1.
    Langer R, Vacanti JP (1993) Science 260:920–926CrossRefGoogle Scholar
  2. 2.
    Wang YJ, Lu L, Zheng YD, Chen XF (2006) J Biomed Mater Res A 76A:589–595CrossRefGoogle Scholar
  3. 3.
    Djordjevic I, Britcher LG, Kumar S (2008) Appl Surf Sci 254:1929–1935CrossRefGoogle Scholar
  4. 4.
    Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P (2009) Biomacromolecules 10:2351–2378CrossRefGoogle Scholar
  5. 5.
    Ryu GH, Yang WS, Roh HW, Lee IS, Kim JK, Lee GH, Lee DH, Park BJ, Lee MS, Park JC (2005) Surf Coat Technol 193:60–64CrossRefGoogle Scholar
  6. 6.
    Hutmacher DW (2000) Biomaterials 21:2529–2543CrossRefGoogle Scholar
  7. 7.
    Chen GP, Ushida T, Tateishi T (2002) Macromol Biosci 2:67–77CrossRefGoogle Scholar
  8. 8.
    Morent R, De Geyter N, Desmet T, Dubruel P, Leys C (2011) Plasma Process Polym 8:171–190CrossRefGoogle Scholar
  9. 9.
    Shen H, Hu XX, Yang F, Bel JZ, Wang SG (2007) Biomaterials 28:4219–4230CrossRefGoogle Scholar
  10. 10.
    Morent R, De Geyter N, Trentesaux M, Gengembre L, Dubruel P, Leys C, Payen E (2010) Plasma Chem Plasma Process 30:525–536CrossRefGoogle Scholar
  11. 11.
    Park GE, Pattison MA, Park K, Webster TJ (2005) Biomaterials 26:3075–3082CrossRefGoogle Scholar
  12. 12.
    Zhu YB, Gao CY, Liu XY, Shen JC (2002) Biomacromolecules 3:1312–1319CrossRefGoogle Scholar
  13. 13.
    Chong MSK, Lee CN, Teoh SH (2007) Mat Sci Eng C 27:309–312CrossRefGoogle Scholar
  14. 14.
    Ho MH, Lee JJ, Fan SC, Wang DM, Hou LT, Hsieh HJ, Lai JY (2007) Macromol Biosci 7:467–474CrossRefGoogle Scholar
  15. 15.
    Montanari L, Costantini M, Signoretti EC, Valvo L, Santucci M, Bartolomei M, Fattibene P, Onori S, Faucitano A, Conti B, Genta I (1998) J Controlled Release 56:219–229CrossRefGoogle Scholar
  16. 16.
    Place ES, George JH, Williams CK, Stevens MM (2009) Chem Soc Rev 38:1139–1151CrossRefGoogle Scholar
  17. 17.
    Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, Wang DM (2006) Macromol Biosci 6:90–98CrossRefGoogle Scholar
  18. 18.
    Cheng ZY, Teoh SH (2004) Biomaterials 25:1991–2001CrossRefGoogle Scholar
  19. 19.
    Borcia G, Brown NMD (2007) J Phys D-Appl Phys 40:1927–1936CrossRefGoogle Scholar
  20. 20.
    Heyse P, Dams R, Paulussen S, Houthofd K, Janssen K, Jacobs PA, Sels BF (2007) Plasma Process Polym 4:145–157CrossRefGoogle Scholar
  21. 21.
    Martin S, Massines F, Gherardi N, Jimenez C (2004) Surf Coat Technol 177:693–698CrossRefGoogle Scholar
  22. 22.
    Han I, Kwon BJ, Vagaska B, Kim BJ, Kang JK, Lee MH, Kim HH, Park JC, Wang KK, Kim YR, An JS, Lee JM, Hyun CY, Jeong JH, Lim SJ (2011) Macromol Res 19:1134–1141CrossRefGoogle Scholar
  23. 23.
    Park SA, Lee SH, Kim W, Han I, Park JC (2011) J Tissue Eng Regen Med 8:A23–A27Google Scholar
  24. 24.
    Little U, Buchanan F, Harkin-Jones E, Graham B, Fox B, Boyd A, Meenan B, Dickson G (2009) Acta Biomater 5:2025–2032CrossRefGoogle Scholar
  25. 25.
    Yildirim ED, Gandhi M, Fridman A, Guceri S, Sun W (2008) In: Guceri S, Fridman A (eds) Plasma assisted decontamination of biological and chemical agents. Springer, DordrechtGoogle Scholar
  26. 26.
    Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, Neves NM (2009) Small 5:1195–1206Google Scholar
  27. 27.
    Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner HE (2007) Plasma Process Polym 4:S1041–S1045CrossRefGoogle Scholar
  28. 28.
    Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) IEEE Trans Plasma Sci 26:1685–1694CrossRefGoogle Scholar
  29. 29.
    Weltmann KD, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, von Woedtke T (2009) Contrib Plasma Phys 49:631–640CrossRefGoogle Scholar
  30. 30.
    Weltmann KD, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, Kindel E (2008) J Phys D-Appl Phys 41:194008CrossRefGoogle Scholar
  31. 31.
    Hibert C, Gaurand I, Motret O, Pouvesle JM (1999) J Appl Phys 85:7070–7075CrossRefGoogle Scholar
  32. 32.
    Massines F, Gouda G (1998) J Phys D-Appl Phys 31:3411–3420CrossRefGoogle Scholar
  33. 33.
    Nikiforov AY, Sarani A, Leys C (2011) Plasma Sources Sci Technol 20:015014CrossRefGoogle Scholar
  34. 34.
    Bornholdt S, Wolter M, Kersten H (2010) Eur Phys J D 60:653–660CrossRefGoogle Scholar
  35. 35.
    Sarani A, Nikiforov AY, Leys C (2010) Phys Plasmas 17:063504CrossRefGoogle Scholar
  36. 36.
    Morent R, De Geyter N, Leys C (2008) Nucl Instrum Methods Phys Res B 266:3081–3085CrossRefGoogle Scholar
  37. 37.
    Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2008) Surf Interface Anal 40:597–600CrossRefGoogle Scholar
  38. 38.
    De Geyter N, Morent R, Leys C (2008) Surf Interface Anal 40:608–611CrossRefGoogle Scholar
  39. 39.
    Morent R, De Geyter N, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E (2008) Eur Phys J Appl Phys 43:289–294CrossRefGoogle Scholar
  40. 40.
    Briggs D (1998) Surface analysis of polymers by XPS and static SIMS. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. 41.
    Dorai R, Kushner MJ (2003) J Phys D-Appl Phys 36:666–685CrossRefGoogle Scholar
  42. 42.
    Hong YJ, Nam CJ, Song KB, Cho GS, Uhm HS, Choi DI, Choi EH (2012) J Instrum 7:C03046CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • N. De Geyter
    • 1
    Email author
  • A. Sarani
    • 1
  • T. Jacobs
    • 1
  • A. Yu. Nikiforov
    • 1
  • T. Desmet
    • 2
  • P. Dubruel
    • 2
  1. 1.Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and ArchitectureGhent UniversityGhentBelgium
  2. 2.Polymer Chemistry and Biomaterials Group, Department of Organic Chemistry, Faculty of SciencesGhent UniversityGhentBelgium

Personalised recommendations