Plasma Chemistry and Plasma Processing

, Volume 32, Issue 6, pp 1139–1155

Wet Conversion of Methane and Carbon Dioxide in a DBD Reactor

  • Torsten Kolb
  • Thorsten Kroker
  • Jan H. Voigt
  • Karl-Heinz Gericke
Original Paper


The influence of water on the plasma assisted conversion of methane and carbon dioxide in a dielectric barrier discharge (DBD) plug flow reactor was studied. The plasma at atmospheric pressure was ignited by a power supply at a frequency of 13.56 MHz. Product formation was studied at a power range between 35 and 70 W. The concentrations of the three gases were altered and diluted with helium to 3 %. FTIR spectroscopy and mass spectroscopy were applied to analyze the inlet and the product streams. The main product of this process are hydrogen, carbon monoxide and ethane. Ethene, ethine, methanol and formaldehyde are generated beside the main products in this DBD in lower concentrations. The conversion of methane, the ratio of the synthesis gas components (n(H2):n(CO)), and the yield of oxygenated hydrocarbons and hydrogen increases by adding water. The total consumed energy reaches lower values for small amounts of water. Additional water does not influence the generated amount of C2 hydrocarbons and of CO, but decreases the carbon dioxide conversion.


Dielectric barrier discharge Cold plasma Water Methane Carbon dioxide 


  1. 1.
    Angelidaki I, Ellegaard L, Kioer Ahring B (2003) Applications of the anaerobic digestion process. Adv Biochem Eng Biot 82:1–33Google Scholar
  2. 2.
    Hilkiah Igoni A, Ayotamuno MJ, Eze CL, Ogaji SOT, Probert SD (2008) Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl Energ 85:430–438CrossRefGoogle Scholar
  3. 3.
    Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380CrossRefGoogle Scholar
  4. 4.
    Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26:610–617CrossRefGoogle Scholar
  5. 5.
    Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X (2010) CH4–CO2 reforming by plasma: challenges and opportunities. Prog Energ Combust 37:113–124CrossRefGoogle Scholar
  6. 6.
    Sentek J, Krawczyk K, Młotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke K-H, Schmidt-Szałowski K (2010) Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Appl Catal B 94:19–26CrossRefGoogle Scholar
  7. 7.
    Istadi N, Amin AS (2006) Co-generation of synthesis gas and C2C hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: a review. Fuel 85:577–592CrossRefGoogle Scholar
  8. 8.
    Kroker T, Kolb T, Schenk A, Krawczyk K, Młotek M, Gericke K-H (2012) Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD. Plasma Chem Plasma P 32:565–582CrossRefGoogle Scholar
  9. 9.
    Rico VJ, Hueso JL, Cotrino J, González-Elipe AR (2010) Evaluation of different dielectric barrier discharge plasma configurations as an alternative technology for green C1 chemistry in the carbon dioxide reforming of methane and the direct decomposition of methanol. J Phys Chem A 114:4009–4016CrossRefGoogle Scholar
  10. 10.
    Eliasson B, Liu CJ, Kogelschatz U (2000) Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Ind Eng Chem Res 39:1221–1227CrossRefGoogle Scholar
  11. 11.
    Liu C-J, Xue B, Eliasson B, He F, Li Y, Xu GH (2001) Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge. Plasmas Plasma Chem Plasma P 21:301–310CrossRefGoogle Scholar
  12. 12.
    Kroker T, Kolb T, Krawczyk K, Mlotek M, Schenk A, Gericke K-H (2010) Catalytic conversion of biogas in a fluidized bed reactor supported by a DBD. Front Appl Plasma Technol 3:69–73Google Scholar
  13. 13.
    Zhang Y-P, Li Y, Wang Y, Liu C-J, Eliasson B (2003) Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges. Fuel Process Technol 83:101–109CrossRefGoogle Scholar
  14. 14.
    Mfopara A, Kirkpatrick MJ, Odic E (2009) Dilute methane treatment by atmospheric pressure dielectric barrier discharge: effects of water vapor. Plasma Chem Plasma P 29:91–102CrossRefGoogle Scholar
  15. 15.
    Kolb T, Kroker T, Gericke K-H (2012) Conversion of biogas like mixtures to C2 hydrocarbon in a plug flow reactor supported by a DBD at atmospheric pressure. Vaccum. doi:10.1016/j.vacuum.2012.01.013 Google Scholar
  16. 16.
    Kroker T (2010) Qualitative und Quantitative Produktanalyse der Katalytischen Konvertierung von Biogas in Plasmagestützten Rohrströmungsreaktoren. PHD Thesis TU BraunschweigGoogle Scholar
  17. 17.
    Goujard V, Tatibouet JM, Batiot-Dupeyrat C (2011) Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: effect of helium dilution and kinetic model. Plasma Chem Plasma P 31:315–325CrossRefGoogle Scholar
  18. 18.
    Drake GWF (2002) Progress in helium fine-structure calculations and the fine-structure constant. Can J Phys 80:1195–1212CrossRefGoogle Scholar
  19. 19.
    deB Darwent B (1970) Bond dissociation energies in simple molecules. NBSDS-NBS 31Google Scholar
  20. 20.
    Wang Q, Yan BH, Jin Y, Cheng Y (2009) Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma Chem Plasma P 29:217–228CrossRefGoogle Scholar
  21. 21.
    Liu CJ, Mallinson R, Lobban L (2009) Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma. J Catal B 179:326–334CrossRefGoogle Scholar
  22. 22.
    Tsang W, Hampson RF (1986) Chemical kinetic data base for combustion chemistry. Part I. methane and related compounds. J Phys Chem Ref Data 15:1087–1279CrossRefGoogle Scholar
  23. 23.
    Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma P 23(2003):1–46CrossRefGoogle Scholar
  24. 24.
    Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A 161:59–78CrossRefGoogle Scholar
  25. 25.
    Beller M, Cornils B, Frohning CD, Kohlpaintner CW (1995) Progress in hydroformylation and carbonylation. J Mol Catal A 104:17–85CrossRefGoogle Scholar
  26. 26.
    Pasel J, Samsun RC, Schmitt D, Peters R, Stolten D (2005) J Power Sources 152:189–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Torsten Kolb
    • 1
  • Thorsten Kroker
    • 1
  • Jan H. Voigt
    • 1
  • Karl-Heinz Gericke
    • 1
  1. 1.Institute of Physical and Theoretical ChemistryBraunschweigGermany

Personalised recommendations