Plasma Chemistry and Plasma Processing

, Volume 32, Issue 6, pp 1169–1188 | Cite as

Ethylene Epoxidation in Cylindrical Dielectric Barrier Discharge: Effects of Separate Ethylene/Oxygen Feed

  • Thitiporn Suttikul
  • Chakrit Tongurai
  • Hidetoshi Sekiguchi
  • Sumaeth Chavadej
Original Paper

Abstract

The effects of separate C2H4/O2 feed and C2H4 feed position on the ethylene epoxidation reaction in an AC cylindrical dielectric barrier discharge reactor were investigated. The highest EO selectivity of 34 % and EO yield of 7.5 %, as well as the lowest power consumption of 1.72 × 10−16 Ws/molecule of EO produced, were obtained at a C2H4 feed position of 0.25, an O2/C2H4 feed molar ratio of 1/4, an applied voltage of 13 kV, an input frequency of 550 Hz, and a total feed flow rate of 75 cm3/min. The results demonstrated, for the first time, that the separate feed of C2H4 and O2 could provide better ethylene epoxidation performance in terms of higher EO selectivity and yield, and lower power consumption, as compared to the mixed feed. All undesired reactions including C2H4 cracking, dehydrogenation, oxidation, and coupling reactions are lowered by the ethylene separate feed because of a decrease in opportunity of ethylene molecules to be activated by generated electrons.

Keywords

Epoxidation Ethylene oxide Dielectric barrier discharge Feed position 

Notes

Acknowledgments

The authors would like to gratefully acknowledge Dudsadeepipat Scholarship, Chulalongkorn University, Thailand, and Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Thailand.

References

  1. 1.
    Lefort TE (1931) Fr Patent FR 729952Google Scholar
  2. 2.
    Campbell CT, Paffett MT (1984) Appl Surf Sci 19:28–42CrossRefGoogle Scholar
  3. 3.
    Campbell CT (1986) J Catal 99:28–38CrossRefGoogle Scholar
  4. 4.
    Tan SA, Grant RB, Lambert RM (1987) Appl Catal 31:159–177CrossRefGoogle Scholar
  5. 5.
    Tan SA, Grant RB, Lambert RM (1987) J Catal 106:54–64CrossRefGoogle Scholar
  6. 6.
    Rafael H, Arvind V, Enrico M (1990) Stud Surf Sci Catal 55:717–724CrossRefGoogle Scholar
  7. 7.
    Jun Y, Jingfa D, Xiaohong Y, Shi Z (1992) Appl Catal A Gen 92:73–80CrossRefGoogle Scholar
  8. 8.
    Macieod N, Keel JM, Lambert RM (2003) Catal Lett 86:51–56CrossRefGoogle Scholar
  9. 9.
    Jankowick JT, Barteau MA (2005) J Catal 236:379–386CrossRefGoogle Scholar
  10. 10.
    Kapra AY, Orlik SN (2005) Theor Exp Chem 41:377–381CrossRefGoogle Scholar
  11. 11.
    Dellamorte JC, Lauterback J, Barteau MA (2007) Ind Eng Chem Res 48:5943–5953CrossRefGoogle Scholar
  12. 12.
    Marta CN, Carvalho A, Passos FB, Schmal M (2007) J Catal 248:124–129CrossRefGoogle Scholar
  13. 13.
    Rojluechi S, Chavadej S, Schwank JW, Meeyoo V (2007) Catal Commun 8:57–64CrossRefGoogle Scholar
  14. 14.
    Torres D, Illas F, Lambert RM (2008) J Catal 260:380–383CrossRefGoogle Scholar
  15. 15.
    Sreethawong T, Suwannabart T, Chavadej S (2009) Chem Eng J 115:396–403CrossRefGoogle Scholar
  16. 16.
    Kim DB, Rhee JK, Moon SY, Choe W (2007) Thin Solid Films 515:4913–4917CrossRefGoogle Scholar
  17. 17.
    Yu SJ, Chang MB (2001) Plasma Chem Plasma Process 21:311–327CrossRefGoogle Scholar
  18. 18.
    Thevenet F, Couble J, Brandhorst M, Dubois JL, Puzenat E, Guillard C, Bianchi D (2010) Plasma Chem Plasma Process 30:489–502CrossRefGoogle Scholar
  19. 19.
    Panorel I, Kornev I, Hatakka H, Preis S (2011) Water Sci Technol Water Supply 11:238–345CrossRefGoogle Scholar
  20. 20.
    Heintze M, Pietruszka B (2004) Catal Today 89:21–25CrossRefGoogle Scholar
  21. 21.
    Li X, Bai M, Tao X, Shan S, Yin Y, Dai X (2010) J Fuel Chem Technol 38:195–200CrossRefGoogle Scholar
  22. 22.
    Ouni F, Khacef A, Cormier JM (2009) Plasma Chem Plasma Process 29:119–130CrossRefGoogle Scholar
  23. 23.
    Mora M, García MC, Jiménez-Sanchidrián C, Romero-Salguero FJ (2011) Plasma Process Polym 8:709–717CrossRefGoogle Scholar
  24. 24.
    Nozaki T, Goujard V, Yuzawa S, Moriyama S, Ağiral A, Okazaki K (2011) J Phys D Appl Phys 44:art no 274010Google Scholar
  25. 25.
    Yu Q, Kong M, Liu T, Fei J, Zheng X (2011) Catal Commun 12:1318–1322CrossRefGoogle Scholar
  26. 26.
    Rosacha LA, Anderson GK, Bechtold LA, Coogan JJ, Heck HG, Kang M, McCulla WH, Tennant RA, Wantuck PJ (1993) NATO ASI Part B 34:128–139Google Scholar
  27. 27.
    Durme JV, Dewulf J, Leys C, Langenhove HV (2008) Appl Catal B Environ 78:324–333CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Li D, Wang H (2010) Plasma Sci Technol 12:702–707CrossRefGoogle Scholar
  29. 29.
    Quoc Ana HT, Pham Huua T, Le Vana T, Cormierb JM, Khacefb A (2011) Catal Today 176:474–477CrossRefGoogle Scholar
  30. 30.
    Suhr H, Schmid H, Pfeundschuh H, Iacocca D (1984) Plasma Chem Plasma Process 4:285–295CrossRefGoogle Scholar
  31. 31.
    Torres G, Torres W, Prieto JA (2004) Tetrahedron 60:10245–10251CrossRefGoogle Scholar
  32. 32.
    Suga Y, Sekiguchi H (2006) Thin Solid Films 506–507:427–431CrossRefGoogle Scholar
  33. 33.
    Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, Sreethawong T (2007) J Mol Catal A: Chem 263:128–136CrossRefGoogle Scholar
  34. 34.
    Chavadej S, Tansuwan A, Sreethawong T (2008) Plasma Chem Plasma Process 28:643–662CrossRefGoogle Scholar
  35. 35.
    Sreethawong T, Suwannabart T, Chavadej S (2008) Plasma Chem Plasma Process 28:629–642CrossRefGoogle Scholar
  36. 36.
    Chernyak VYa, Olszewski SV, Yukhymenko VV, Solomenko EV, Prysiazhnevych IV, Naumov VV, Levko DS, Shchedrin AI, Ryabtsev AV, Demchina VP, Kudryavtsev VS, Martysh EV, Verovchuck MA (2008) IEEE T Plasma Sci 36:2933–2939CrossRefGoogle Scholar
  37. 37.
    Sreethawong T, Permsin N, Suttikul T, Chavadej S (2010) Plasma Chem Plasma Process 30:503–524CrossRefGoogle Scholar
  38. 38.
    Suttikul T, Sreethawong T, Sekiguchi H, Chavadej S (2011) Plasma Chem Plasma Process 31:273–290CrossRefGoogle Scholar
  39. 39.
    Khani MR, Barzoki SHR, Yaghmaee MS, Hosseini SI, Shariat M, Shokri B, Fakhari AR, Nojavan S, Tabani H, Ghaedian M (2011) IEEE T Plasma Sci 39:1807–1813CrossRefGoogle Scholar
  40. 40.
    Kline L, Partlow W, Bies W (1989) J Appl Phys 65:70–78CrossRefGoogle Scholar
  41. 41.
    Coltrin ME, Dandy DS (1993) J Appl Phys 74:5803–5820CrossRefGoogle Scholar
  42. 42.
    Yu B, Girschick S (1994) J Appl Phys 75:3914–3923CrossRefGoogle Scholar
  43. 43.
    Ivanov V, Proshina O, Rakhimova T, Rakhimov A, Herrebout D, Bogaerts A (2002) J Appl Phys 91:6296–6302CrossRefGoogle Scholar
  44. 44.
    Morrison N, William C, Milne W (2003) J Appl Phys 94:7031–7043CrossRefGoogle Scholar
  45. 45.
    Farouk T, Farouk B, Gutsol A, Fridman A (2008) J Phys D Appl Phys 41:art no 175202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thitiporn Suttikul
    • 1
  • Chakrit Tongurai
    • 2
  • Hidetoshi Sekiguchi
    • 3
  • Sumaeth Chavadej
    • 1
    • 4
  1. 1.The Petroleum and Petrochemical CollegeChulalongkorn UniversityBangkokThailand
  2. 2.Department of Chemical EngineeringPrince of Songkla UniversityHat Yai, SongklaThailand
  3. 3.Department of Chemical EngineeringTokyo Institute of TechnologyTokyoJapan
  4. 4.Center of Excellence on Petrochemical and Materials TechnologyChulalongkorn UniversityBangkokThailand

Personalised recommendations