Advertisement

Plasma Chemistry and Plasma Processing

, Volume 32, Issue 5, pp 1039–1073 | Cite as

Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction

  • Tinneke JacobsEmail author
  • Rino Morent
  • Nathalie De Geyter
  • Peter Dubruel
  • Christophe Leys
Review Paper

Abstract

Polymers are commonly used in industry because of their excellent bulk properties, such as strength and good resistance to chemicals. Their surface properties are for most application inadequate due to their low surface energy. A surface modification is often needed, and plasma surface modification is used with success the past decades. In the past few years, also plasma surface modification for biomedical polymers has been investigated. For biomedical polymers, the surface properties need to be altered to promote a good cell adhesion, growth and proliferation and to make them suitable for implants and tissue engineering scaffolds. This review gives an overview of the use of plasma surface modification of biomedical polymers and the influence on cell-material interactions. First, an introduction on cell-material interaction and on antibacterial and antifouling surfaces will be given. Also, different plasma modifying techniques used for polymer surface modification will be discussed. Then, an overview of literature on plasma surface modification of biopolymers and the resulting influence on cell-material interaction will be given. After an overview of plasma treatment for improved cell-material interaction, plasma polymerization and plasma grafting techniques will be discussed. Some more specialized applications will be also presented: the treatment of 3D scaffolds for tissue engineering and the spatial control of cell adhesion. Antibacterial and antifouling properties, obtained by plasma techniques, will be discussed. An overview of research dealing with antibacterial surfaces created by plasma techniques will be given, antifouling surfaces will be discussed, and how blood compatibility can be improved by preventing protein adhesion.

Keywords

Plasma Biomedical polymer Surface modification Cell-material interaction 

References

  1. 1.
    Tabata Y (2001) Recent progress in tissue engineering. Drug Discov Today 6:483–487CrossRefGoogle Scholar
  2. 2.
    Vasita R, Shanmugam K, Katti D (2008) Improved biomaterials for tissue engineering applications: surface Modification of Polymers. Curr Top Med Chem 8:341–353CrossRefGoogle Scholar
  3. 3.
    Jiao YP, Cui FZ (2007) Surface modification of polyester biomaterials of tissue engineering. Biomed Mater 2:R24–R37ADSCrossRefGoogle Scholar
  4. 4.
    Oehr C (2003) Plasma surface modification of polymers for biomedical use. Nucl Instrum Methods B 208:40–47ADSCrossRefGoogle Scholar
  5. 5.
    Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Comm 21:117–132CrossRefGoogle Scholar
  6. 6.
    Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:3–54CrossRefGoogle Scholar
  7. 7.
    Morent R, De Geyter N, Desmet T, Dubruel P, Leys C (2011) Plasma surface modification of biodegradable polymers: a review. Plasma Process Polym 8:171–190CrossRefGoogle Scholar
  8. 8.
    Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P (2009) Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules 10:2351–2378CrossRefGoogle Scholar
  9. 9.
    Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng 36:143–206CrossRefGoogle Scholar
  10. 10.
    Roach P, Eglin D, Rohde K, Perry CC (2007) Modern biomaterials: a review—bulk properties and implications of surface modifications. J Mater Sci Mater Med 18:1263–1277CrossRefGoogle Scholar
  11. 11.
    Keselowsky BG, Collard DM, Garcia AJ (2005) Intergin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA 102:5953–5957ADSCrossRefGoogle Scholar
  12. 12.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55CrossRefGoogle Scholar
  13. 13.
    Vasilev K, Cook J, Griesser HJ (2009) Antibacterial surfaces for biomedical devices. Expert Rev Med Devic 6:553–567CrossRefGoogle Scholar
  14. 14.
    Costerton JW, Steward PS, Greenberg EP (1999) Bacterial Biofilms a common Cause of Persistent Infections. Science 284:1318–1322ADSCrossRefGoogle Scholar
  15. 15.
    Martin TP, Kooi SE, Chang SH, Sedrans KL, Gleason KK (2007) Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials 26:909–915CrossRefGoogle Scholar
  16. 16.
    Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789CrossRefGoogle Scholar
  17. 17.
    Banerjee I, Pangule RC, Kane RS (2003) Antifouling coatings: recent developments in design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advan Mater 32:690–718Google Scholar
  18. 18.
    Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201:3642–3652CrossRefGoogle Scholar
  19. 19.
    Amiji M, Park K (1993) Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin and heparin. J Biomat Sci Polym E 4:217–234CrossRefGoogle Scholar
  20. 20.
    Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18:3405–3413CrossRefGoogle Scholar
  21. 21.
    Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, Wang DM (2006) Promotion of cell affinity of porous PLLA scaffold by immobilization of RGD peptides via plasma treatment. Macromol Biosci 6:90–98CrossRefGoogle Scholar
  22. 22.
    Shen H, Hu XX, Yang F, Bel JZ, Wang SG (2007) Conbining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly (lactide-co-glycolide). Biomaterials 28:4219–4230CrossRefGoogle Scholar
  23. 23.
    Bogaerts A, Neyts E, Gijbels R, van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochim Acta B 57:609–658ADSCrossRefGoogle Scholar
  24. 24.
    Zenkiewicz M, Rytlewski P, Malinowski R (2011) Low-temperature plasma modification of polymers—methods and equipment. Polimery 56:185–195Google Scholar
  25. 25.
    De Geyter N, Morent R, Leys C, Gengembre L, Payen E (2007) Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf Coat Technol 201:7066–7075CrossRefGoogle Scholar
  26. 26.
    Cui NY, Brown NMD (2002) Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. Appl Surf Sci 189:31–38ADSCrossRefGoogle Scholar
  27. 27.
    Morent R, De Geyter N, Leys C, Genbembre L, Payen E (2007) Study of the ageing behavior of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf Coat Technol 201:7847–7854CrossRefGoogle Scholar
  28. 28.
    De Geyter N, Morent R, Leys C (2008) Influence of ambient conditions on the ageing behavior of plasma-treated PET surfaces. Nucl InstrumMeth B 226:3086–3090CrossRefGoogle Scholar
  29. 29.
    Morent R, De Geyter N, Van Vlierberghe S, Beaurain A, Dubruel P, Payen E (2011) Influence of operating parameters on plasma polymerization of acrylic acid in a mesh-to-plate dielectric barrier discharge. Prog Org Coat 70:336–341CrossRefGoogle Scholar
  30. 30.
    De Geyter N, Morent R, Van Vlierberghe S, Frere-Trentesaux M, Dubruel P, Payen E (2011) Effect of electrode geometry on the uniformity of plasma-polymerized methyl methacrylate coatings. Prog Org Coat 70:293–299CrossRefGoogle Scholar
  31. 31.
    Morent R, De Geyter N, Van Vlierberghe S, Dubruel P, Leys C, Gengembre L, Schacht E, Payen E (2009) Deposition of HMDSO-based coatings on PET substrates using an atmospheric pressure dielectric barrier discharge. Prog Org Coat 64:304–310CrossRefGoogle Scholar
  32. 32.
    Morent R, De Geyter N, Van Vlierberghe S, Vanderleyden E, Dubruel P, Leys C, Schacht E (2009) Deposition of polyacrylic acid films by means of an atmospheric pressure dielectric barrier discharge. Plasma Chem Plasma Process 29:103–117CrossRefGoogle Scholar
  33. 33.
    Arefi F, Andere V, Montazer-Rahmati P, Amouroux J (1992) Plasma polymerization and surface treatment of polymers. Pure Appl Chem 64:715–723CrossRefGoogle Scholar
  34. 34.
    Vasilets VN, Hermel G, Konig U, Werner C, Muller M, Simon F, Grundke K, Ikada Y, Jacobasch JH (1997) Microwave CO2 plasma-initiated vapour phase graft polymerization of acrylic acid onto polyterafluoroethylene for immobilization of human thrombomodulin. Biomaterials 18:1139–1145CrossRefGoogle Scholar
  35. 35.
    Conrads H, Schmidt M (2004) Plasma generation and plasma sources. Plasma Soures Sci Technol 9:441–454ADSCrossRefGoogle Scholar
  36. 36.
    Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2008) Atmospheric pressure plasma: a review. Spectrochim Acta B 61:2–30ADSCrossRefGoogle Scholar
  37. 37.
    Jiao YP, Cui FZ (2007) Surface modification of polyester biomaterials for tissue engineering. Biomed Mater 2(4):R24–R37ADSCrossRefGoogle Scholar
  38. 38.
    Cao Y, Liu W, Zhou G, Cui L (2007) Tissue engineering and tissue repair in immunocompetent animals: tissue construction and repair. Handchir Mikrochir Plast Chir 39(3):156–160CrossRefGoogle Scholar
  39. 39.
    Chong MSK, Lee CN, Teoh SH (2007) Characterization of smooth muscle cells on poly(ε-caprolactone) films. Mater Sci Eng C Biomimetic Supramol Syst 27(2):309–312Google Scholar
  40. 40.
    Choong CSN, Hutmacher DW, Triffitt JT (2006) Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng 12(9):2521–2531CrossRefGoogle Scholar
  41. 41.
    Mathieson I, Bradley RH (1996) Improved adhesion to polymers by UV/ozone surface oxidation. Int J Adhes Adhes 16(1):29–31CrossRefGoogle Scholar
  42. 42.
    Mathieson I, Bradley RH (1995) Effects of ultra-violet ozone oxidation on the surface-chemistry of polymer-films. Adv Eng Mater 99–1:185–191Google Scholar
  43. 43.
    Davidson MR, Mitchell SA, Bradley RH (2005) Surface studies of low molecular weight photolysis products from UV-ozone oxidised polystyrene. Surf Sci 581(2–3):169–177ADSCrossRefGoogle Scholar
  44. 44.
    Kato K, Uchida E, Kang ET, Uyama Y, Ikada Y (2003) Polymer surface with graft chains. Prog Polym Sci 28(2):209–259CrossRefGoogle Scholar
  45. 45.
    Deng J, Wang L, Liu L, Yang W (2009) Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci 34(2):156–193CrossRefGoogle Scholar
  46. 46.
    Yang Y, Porte MC, Marmey P, El Haj AJ, Amedee J, Baquey C (2003) Covalent bonding of collagen on poly(l-lactic acid) by gamma irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 207(2):165–174Google Scholar
  47. 47.
    Cho EH, Lee SG, Kim JK (2005) Surface modification of UHMWPE with gamma-ray radiation for improving interfacial bonding strength with bone cement (II). Curr Appl Phys 5(5):475–479ADSCrossRefGoogle Scholar
  48. 48.
    Shojaei A, Fathi R, Sheikh N (2007) Adhesion modification of polyethylenes for metallization using radiation-induced grafting of vinyl monomers. Surf Coat Technol 201(16–17):7519–7529CrossRefGoogle Scholar
  49. 49.
    Gatenholm P, Ashida T, Hoffman AS (1997) Hybrid biomaterials prepared by ozone-induced polymerization 0.1. Ozonation of microporous polypropylene. J Polym Sci Part A Polym Chem 35(8):1461–1467ADSCrossRefGoogle Scholar
  50. 50.
    Yu HY, He JM, Liu LQ, He XC, Gu JS, Wei XW (2007) Photoinduced graft polymerization to improve antifouling characteristics of an SMBR. J Membr Sci 302(1–2):235–242CrossRefGoogle Scholar
  51. 51.
    Goda T, Matsuno R, Konno T, Takai M, Ishihara K (2008) Photografting of 2-methacryloyloxyethyl phosphorylcholine from polydimethylsiloxane: tunable protein repellency and lubrication property. Colloids Surf B Biointerfaces 63(1):64–72Google Scholar
  52. 52.
    Shim JK, Na HS, Lee YM, Huh H, Nho YC (2001) Surface modification of polypropylene membranes by gamma-ray induced graft copolymerization and their solute permeation characteristics. J Membr Sci 190(2):215–226CrossRefGoogle Scholar
  53. 53.
    Morent R, De Geyter N, Leys C (2008) Effects of operating parameters on plasma-induced PET surface treatment. Nucl. Instrum. Methods B 266:3081–3085ADSCrossRefGoogle Scholar
  54. 54.
    Morent R, De Geyter N, Gengembre L, Les C, Payen E, Van Vlierberghe S, Payen E (2008) Surface treatment of a polypropylene film with a nitrogen DBD at medium pressure. Europ Phys J Appl Phys 43:289–294ADSCrossRefGoogle Scholar
  55. 55.
    Siow KS, Brichter L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Process Polym 3:292–418CrossRefGoogle Scholar
  56. 56.
    Khorasani MT, Mirzadeh H, Irani S (2008) Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion. Rad Phys Chem 77:280–287ADSCrossRefGoogle Scholar
  57. 57.
    Khorasani MT, Mirzadeh H, Irani S (2009) Comparison of fibroblast and nerve cells response on plasma treated poly (l-lactide) surface. J Appl Polym Sci 112:2429–3435Google Scholar
  58. 58.
    Nakagawa M, Teroaka F, Fujimoto S, Hamada Y, Kibayashi K, Takahashi J (2006) Improvement of cell adhesion on poly (l-lactide) by atmospheric plasma treatment. J Biomed Mater Res A 77A:112–118CrossRefGoogle Scholar
  59. 59.
    Teraoka F, Nakagawa M, Hara M (2006) Surface modification of poly (L-lactide) by atmospheric pressure plasma treatment and cell response. Dent Mater J 25:560–565CrossRefGoogle Scholar
  60. 60.
    Chu CFL, Lu A, Liszkowski M, Siphia R (1999) Enhanced growth of animal and human endothelial cells on biodegradable polymers. Biochim Biophys Acta 1472:479–485CrossRefGoogle Scholar
  61. 61.
    Yang J, Bei JZ, Wang SG (2002) Improving cell affinity of poly (d, l-lactide) film modified by andydrous ammonia plasma treatment. Polym Advan Technol 13:220–226CrossRefGoogle Scholar
  62. 62.
    Gugala Z, Gogolewski S (2006) Attachment, growth, and activity of rat osteoblasts on polylactide membranes treated with various low-temperature radiofrequency plasmas. J Biomed Mater Res A 76A:288–299CrossRefGoogle Scholar
  63. 63.
    Wan Y, Yang J, Yang JL, Bei JZ, Wang SG (2003) Cell adhesion on gaseous plasma modified poly-(l-lactide) surface under shear stress field. Biomaterials 24:3757–3764CrossRefGoogle Scholar
  64. 64.
    Yildirim ED, Ayan H, Vasilets VN, Fridman A, Guceri S, Sun W (2008) Effect of dielectric barrier discharge plasma on the attachment and proliferation of osteoblasts cultured over poly (ε-caprolactone) scaffolds. Plasma Process Polym 5:58–66CrossRefGoogle Scholar
  65. 65.
    Lee HU, Jeong YS, Koh KN, Jeong SY, Kim HG, Bae JS, Cho CR (2009) Contribution of power on cell adhesion using atmospheric dielectric barrier discharge (DBD) plasma system. Current Appl Phys 9:219–223ADSCrossRefGoogle Scholar
  66. 66.
    Lee HU, Jeong YS, Jeong SY, Park SY, Bae JS, Kim HG, Cho CR (2008) Role of reactive gas in atmospheric plasma for cell attachment and proliferation on biocompatible poly ε-caprolactone film. Appl Surf Sci 254:5700–5705ADSCrossRefGoogle Scholar
  67. 67.
    Hasirci N, Endogan T, Vardar E, Kiziltay A, Hasirci V (2010) Effect of oxygen plasma on surface properties and biocompatibility of PLGA films. Surf Interface Anal 42:486–491CrossRefGoogle Scholar
  68. 68.
    Wan Y, Qu X, Lu J, Zhu C, Zhu CF, Wan LJ, Yang JL, Bei JZ, Wang SG (2004) Characterization of surface property of poly (lactide-co-glycolide) after oxygen plasma treatment. Biomaterials 25:4777–4783CrossRefGoogle Scholar
  69. 69.
    Khang G, Choee JH, Rhee JM, Lee HB (2002) Interaction of different types of cells on physicochemically treated poly(L-lactide-co-glycolide) surfaces. J Appl Polym Sci 85:1253–1262CrossRefGoogle Scholar
  70. 70.
    Park H, Lee JW, Park KE, Park WH, Lee KY (2010) Stress response of fibroblasts adherent to the surface of plasma-treated poly(lactic-co-glycolic acid) nanofiber matrices. Colloid Surface B 77:90–95CrossRefGoogle Scholar
  71. 71.
    Wang YJ, Ly L, Zheng YD, Chen XF (2006) Improvement in hydrophilicity of PHBV films by plasmas treatment. J Biomed Mater Res A 76A:589–595CrossRefGoogle Scholar
  72. 72.
    Tezcaner A, Bugra K, Hasirci V (2003) Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials 24:4573–4583CrossRefGoogle Scholar
  73. 73.
    Garrido L, Jimenez I, Ellis G, Cano P, Garcia-Martinez JM, Lopez L, de la Pena E (2011) Characterization of surface-modified polyalkanoate films for biomedical applications. J Appl Polym Sci 119:3286–3296CrossRefGoogle Scholar
  74. 74.
    Pompe T, Keller K, Mothes G, Nitschke M, Teese M (2007) Surface modification of poly(hydroxybutyrate) films to control cell-matrix adhesion. Biomaterials 28:28–37CrossRefGoogle Scholar
  75. 75.
    Qu XH, Wu Q, Liang J, Qu X, Wang SG, Chen GQ (2005) Enhanced vasular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials 26:6991–7001CrossRefGoogle Scholar
  76. 76.
    Woodfield TBF, Miot S, Martin I, van Blitterswijk CA, Riesle J (2006) The regulation of expanded human nasal chondrocyte re-differentation capacity by substrate composition and gas plasma surface modification. Biomaterials 27:1043–1053CrossRefGoogle Scholar
  77. 77.
    Khan SP, Auner GG, Newas GM (2005) Influence of nanoscale surface roughness on neural cell attachment to silicon. Nanomed Nanotechnol 1:125–129Google Scholar
  78. 78.
    Chong MSK, Lee CN, Teoh SH (2007) Characterization of smooth muscle cells on poly(ε-caprolactone) films. Mater Sci Eng 27:309–312CrossRefGoogle Scholar
  79. 79.
    Cheng Z, Teoh SH (2004) Surface modification of ultra thin poly(ε-caprolactone) films using acrylic acid and collagen. Biomaterials 25:1991–2001CrossRefGoogle Scholar
  80. 80.
    Foo HL, Taniguchi A, Yu H, Okano T, Teoh SH (2007) Catalytic surface modification of roll-milled poly(ε-caprolactone) biaxially stretched to ultra-thin dimension. Mater Sci Eng 27:299–303CrossRefGoogle Scholar
  81. 81.
    Kang I-K, Choi S-H, Shin D-S, Yoon SC (2001) Surface modification of polydydroxyalkanoate films and their interaction with human fibroblasts. Int J Biol Macromol 28:205–212CrossRefGoogle Scholar
  82. 82.
    Baquey Ch, Palumbo F, Porte-Durrieu MC, Legeay G, Tressaud A, D’Agostino R (1999) Plasma treatment of expanded PTFE offes a way to a biofunctionalization of its surface. Nucl Instrum Meth B 151:255–262ADSCrossRefGoogle Scholar
  83. 83.
    Seo HS, Ko YM, Shim JW, Lim YK, Kook J-K, Cho D-L, Kim BH (2010) Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization. Appl Surf Sci 257:596–602ADSCrossRefGoogle Scholar
  84. 84.
    Xia Y, Boey F, Venkatraman SS (2010) Surface modification of poly(L-lactic acid) with biomolecules to promote endothelialisation. Biointerphases 5:32–40CrossRefGoogle Scholar
  85. 85.
    Duan Y, Wang Z, Yan W, Wang S, Zhang S, Jia J (2007) Preperation of collagen-coated electrospun nanofibres by remote plasma treatment and their biological properties. J Biomater Sci Polym Ed 18:1153–1164CrossRefGoogle Scholar
  86. 86.
    Shen H, Hu X, Yang F, Bei J, Wang S (2007) Combining oxygen plasma treatment with anchorage of cationized gelatine for enhancing cell affinity of poly(lactide-co-glycolide). Biomaterials 28:4219–4230CrossRefGoogle Scholar
  87. 87.
    Yang J, Bei J, Wang S (2002) Enhanced cell affinity of poly(d, l-lactide) by comining plasma treatment with collagen anchorage. Biomaterials 23:2607–2614CrossRefGoogle Scholar
  88. 88.
    He W, Ma ZW, Young T, Teo WE, Ramakrishna S (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26:7606–7615CrossRefGoogle Scholar
  89. 89.
    Lopez-Perez PM, da Silva RMP, Sousa RA, Pashkuleva I, Reis RL (2010) Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study. Acta Biomater 6:3704–3712CrossRefGoogle Scholar
  90. 90.
    Ding Z, Chen J, Gao S, Chang J, Zhang J, Kang ET (2004) Immobilization of chitosan onto poly-l-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells. Biomaterials 25:1059–1067CrossRefGoogle Scholar
  91. 91.
    Guerrouani N, Baldo A, Bouffin A, Drakides C, Guimon M-F, Mas A (2007) Allylamine plasma-polymerization on PLLA surface evaluation of the biodegradation. J Appl Polym Sci 105:1978–1986CrossRefGoogle Scholar
  92. 92.
    Carlisle ES, Mariappan MR, Nelson KD, Thomes BE, Timmons RB, Constantinescu A, Eberhart RC, Bankey PE (2006) Enhancing hepatocyte adhesion by pulsed plasma deposition and polyethylene glycol coupling. Tissue Eng 6:45–52CrossRefGoogle Scholar
  93. 93.
    Ren TB, Weigel Th, Groth Th, Lendlein A (2008) Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility. J Biomed Mater Res A 86:209–219Google Scholar
  94. 94.
    Park K, Ju YM, Son JS, Ahn K-D, Han DG (2007) Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J Biomater Sci Polym Ed 18:369–382CrossRefGoogle Scholar
  95. 95.
    Mitchell SA, Davidson MR, Emmison N, Bradley RH (2004) Isopropyl alcohol plasma modification of polystyrene surfaces to influence cell attachment behaviour. Surf Sci 561:110–120ADSCrossRefGoogle Scholar
  96. 96.
    Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Proc Polym 3:292–418CrossRefGoogle Scholar
  97. 97.
    Li B, Ma Y, Wang S, Moran PM (2005) Influence of carboxyl group density on neuron cell attachment and differentiation behaviour: gradient-guided neurite outgrow. Biomaterials 26:4956–4963CrossRefGoogle Scholar
  98. 98.
    Li B, Ma Y, Wang S, Moran PM (2005) A technique for preparing protein gradients on polymeric surfaces: effect on PC12 pheochromocytoma cells. Biomaterials 26:1487–1495CrossRefGoogle Scholar
  99. 99.
    Rosso F, Giodano A, Barbarisi M, Barbarisi A (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199:174–180CrossRefGoogle Scholar
  100. 100.
    Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16:224–230CrossRefGoogle Scholar
  101. 101.
    Wan Y, Tu C, Yang J, Bei J, Wang S (2006) Influences of ammonia plasma treatment on modifying depth and degradation of poly(l-lactide) scaffolds. Biomaterials 27:2699–2704CrossRefGoogle Scholar
  102. 102.
    Barry JJA, Silva MCG, Shakesheff KM, Howdle SM, Alexander MR (2005) Using plasma deposits to promote cell population of the porous interior of three-dimensional poly(d, l-lactic acid) tissue-engineering scaffolds. Adv Funct Mater 15:1134–1140CrossRefGoogle Scholar
  103. 103.
    Ju YM, Park K, Son JS, Kim J–J, Rhie J-W, Han DK (2008) Beneficial effect of hydrophilized porous polymer scaffolds on tissue-engineered cartilage formation. J Biomed Mater Res B 85B:252–260CrossRefGoogle Scholar
  104. 104.
    Chim H, Ong JL, Schantz J-T, Hutmacher DW, Agrawal CM (2003) Efficacy of glow discharge on gas plasma treatment as a surface modification process for three-dimensional poly(D, L-lactide) scaffolds. J Biomed Mater Res A 65A:327–335CrossRefGoogle Scholar
  105. 105.
    Yamagushi M, Shinbo T, Kanamori T, Wang PC, Niwa M, Kawakami H, Nagaoka S, Hiakawa K, Kamiya M (2004) Surface modification of poly(l-lactic acid) affects initial cell attachment, cell morphology, and cell growth. J Artif Organs 7:187–193CrossRefGoogle Scholar
  106. 106.
    Ho M-H, Hou L-T, Tu C-Y, Hsieh H-J, Lai J-Y, Chen W-J, Wang D-M (2006) Promotion of cell affinity of porous PLLA scaffolds by immobilization of RGD peptides via plasma treatment. Macromol Biosci 6:90–98CrossRefGoogle Scholar
  107. 107.
    Chen J-P, Su C-H (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatine immobilization for cartilage tissue engineering. Acta Biomater 7:234–243CrossRefGoogle Scholar
  108. 108.
    Prabhakaran P, Venugopal J, Chan CK, Ramakrishna S (2008) Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 19:488102 (8 pp)Google Scholar
  109. 109.
    Yildirim ED, Besunder R, Pappas D, Allen F, Güçeri S, Sun W (2010) Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Biofabrication 2:014109 (12 pp)Google Scholar
  110. 110.
    Köse GT, Kenar K, Hasirci N, Hasirci V (2003) Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials 24:1949–1958CrossRefGoogle Scholar
  111. 111.
    Köse GT, Ber S, Korkusuz F, Hasirci V (2003) Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices. J Mater Sci Mater Med 14:121–126CrossRefGoogle Scholar
  112. 112.
    Kim MS, Khang G, Lee HB (2008) Gradient polymer surfaces for biomedical applications. Prog Polym Sci 33:138–164CrossRefGoogle Scholar
  113. 113.
    Ruardy TG, Schakenraad JM, van der Mei HC, Busscher HJ (1997) Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surf Sci Rep 29:1–30CrossRefGoogle Scholar
  114. 114.
    Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis ASG (2002) The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Mater Sci Eng C19:263–269Google Scholar
  115. 115.
    Lee SJ, Khang G, Lee YM, Lee HB (2003) The effect of surface wettability on induction and growth of neuritis from the PC-12 cell on a polymer surface. J Colloid Interf Sci 256:228–235CrossRefGoogle Scholar
  116. 116.
    Choee J-H, Lee SJ, Lee YM, Rhee JM, Lee HB, Khang G (2004) Proliferation rate of fibroblast cells on polyethylene surfaces with wettability gradient. J Appl Polym Sci 92:599–606CrossRefGoogle Scholar
  117. 117.
    Lee JH, Khang G, Lee JW, Lee HB (1998) Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interf Sci 205:323–330CrossRefGoogle Scholar
  118. 118.
    Zelzer M, Majani R, Bradley JW, Rose FRAJ, Davies MC, Alexander MR (2008) Investigation of cell-surface interactions using chemical gradients formed from plasma polymers. Biomaterials 29:172–184CrossRefGoogle Scholar
  119. 119.
    Wells N, Baxter MA, Thurnbull JE, Murray PM, Edgar D, Parry KL, Steele DA, Short RD (2009) The geometric control of E14 and R1 mouse embryonic stem cell pluripotency by plasma polymer surface gradients. Biomaterials 30:1066–1070CrossRefGoogle Scholar
  120. 120.
    Mitchell SA, Davidson MR, Emmison N, Bradley RH (2004) Isopropyl alcohol plasma modification of polystryrene surfaces to influence cell attachment behaviour. Surf Sci 561:110–120ADSCrossRefGoogle Scholar
  121. 121.
    Mitchell SA, Davidson MR, Bradley RH (2005) Improved cellular adhesion to acetone plasma modified polystyrene surfaces. J Colloid Interf Sci 281:122–129CrossRefGoogle Scholar
  122. 122.
    Mitchell SA, Emmison N, Shard AG (2002) Spatial control of cell attachment using plasma micropatterned polymers. Surf Interf Anal 33:742–747CrossRefGoogle Scholar
  123. 123.
    Sardella E, Gristina R, Senesi GS, d’Agostino R, Favia P (2004) Homogeneous and micro-patterned plasma-deposited PEO-like coatings for biomedical surfaces. Plasma Process Polym 1:63–72CrossRefGoogle Scholar
  124. 124.
    Thissen H, Johnson G, Hartley PG, Kingshott P, Griesser HJ (2006) Two-dimensional patterning of thin coatings for the control of tissue outgrow. Biomaterials 27:35–43CrossRefGoogle Scholar
  125. 125.
    Leduc M, Coulombe S, Leask RL (2009) Atmospheric pressure plasma jet deposition of patterned polymer films for cell culture applications. IEEE Trans Plasma Sci 37:927–933ADSCrossRefGoogle Scholar
  126. 126.
    Gristina AG (1978) Biomaterial-centered infections: microbial adhesion versus tissue intergration. Science 237:1588–1595ADSCrossRefGoogle Scholar
  127. 127.
    Subbiahdoss G, Kuijer R, Grijpma DW, van der Mei HC, Busscher HJ (2009) Microbial biofilm growth vs. tissue integration: “The race for the surface” experimentally studied. Acta Biomater 5:1399–1404CrossRefGoogle Scholar
  128. 128.
    Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7:2015–2028CrossRefGoogle Scholar
  129. 129.
    An YH, Friedman RJ (1997) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348CrossRefGoogle Scholar
  130. 130.
    Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434CrossRefGoogle Scholar
  131. 131.
    Triandafillu K, Balazs DJ, Aronsson B-O, Descouts P, Tu Quoc P, van Delden C, Mathieu HJ, Harms H (2003) Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials 24:1507–1518CrossRefGoogle Scholar
  132. 132.
    Balazs DJ, Triandafillu K, Chevolot Y, Aronsson B-O, Harms H, Descouts P, Mathieu HJ (2003) Surface modification of PVC endotracheal tubes by oxygen glow discharge to reduce bacterial adhesion. Surf Interf Anal 35:301–309CrossRefGoogle Scholar
  133. 133.
    Balazs DJ, Triandafillu K, Wood P, Chevolot Y, van Delden C, Harms H, Hollenstein C, Mathieu HJ (2004) Inhibition of bacterial adhesion on PVC endotracheal tubes by RF- oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials 25:2139–2151CrossRefGoogle Scholar
  134. 134.
    Asadinezhad A, Novak I, Lehocky M, Sedlarik V, Vesel A, Junkar I, Saha P, Chodak I (2010) A physicochemical approach to render antibacterial surfaces on plasma-treated medical grade PVC: irgasan coating. Plasma Process Polym 7:504–514CrossRefGoogle Scholar
  135. 135.
    Asadinezhad A, Novak I, Lehocky M, Sedlarik V, Vesel A, Junkar I, Saha P, Chodak I (2010) An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloid Surface B 77:246–256CrossRefGoogle Scholar
  136. 136.
    Zhang W, Chu PK, Ji J, Zhang Y, Liu X, Fu RKY, Ha PCT, Yan Q (2006) Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties. Biomaterials 27:44–51CrossRefGoogle Scholar
  137. 137.
    Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized ply (l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25:4135–4148CrossRefGoogle Scholar
  138. 138.
    Su W, Wang S, Wang X, Fu X, Weng J (2010) Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf Coat Technol 205:465–469CrossRefGoogle Scholar
  139. 139.
    Chen K-S, Ky Y-A, Lin H-R, Yan T-R, Sheu D-C, Chen T-M (2006) Surface grafting polymerization of N-vinyl-2-pyrrolidone onto a poly(ethylene terephthalate) nonwoven by plasma pretreatment and its antibacterial activities. J Appl Polym Sci 100:803–809CrossRefGoogle Scholar
  140. 140.
    Morra M, Cassineli C (1999) Non-fouling properties of polysaccharide-coated surfaces. J Biomater Sci Polym Ed 10:1107–1124CrossRefGoogle Scholar
  141. 141.
    Cordeiro AL, Nitschke M, Janke A, Helbig R, D’Souza F, Donnelly GT, Willemsen PR, Werner C (2009) Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4—physicochemical and antifouling properties. Express Polym Lett 3:70–83CrossRefGoogle Scholar
  142. 142.
    Katsikogianni M, Amanatides E, Mataras D, Missirlis YF (2008) Staphylococcus epidermidis adhesion to He, He/O2 plasma treated PET films and aged materials: contribution of surface free energy and shear rate. Colloid SurfacsB 65:257–268CrossRefGoogle Scholar
  143. 143.
    Ademovic Z, Holst B, Kahn RA, Jorring I, Brevig T, Wei J, Hou X, Winter-Jensen B, Kingshott P (2006) The method of surface PEGylation influences leukocyte adhesion and activation. J Mater Sci Mater Med 17:203–211CrossRefGoogle Scholar
  144. 144.
    Zanini S, Orlandi M, Colombo C, Grimoldi E, Riccardi C (2009) Plasma-induced graf-polymerization of polyethylene grycol acrylate on polypropylene substrates. Eur Phys J D 54:156–164ADSCrossRefGoogle Scholar
  145. 145.
    Cole MA, Thissen H, Losic D, Voelcker NH (2007) A new approach to the immobilisation of poly(ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates. Surf Sci 601:1716–1725ADSCrossRefGoogle Scholar
  146. 146.
    Geissler A, Vallat M-F, Fioux P, Thomann J-S, Frisch B, Voegel J-C, Hemmerlé J, Schaaf P, Roucoules V (2010) Multifunctional stretchable plasma polymer modified PDMS interface for mechanically responsive materials. Plasma Process Polym 7:64–77CrossRefGoogle Scholar
  147. 147.
    De Bartolo L, Drioli E (1998) Membranes in artificial organs. New Biomed Mater Basic Appl Stud 16:167–181Google Scholar
  148. 148.
    Wang P, Tan KL, Kang ET, Neoh KG (2002) Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. J Membrane Sci 195:103–114CrossRefGoogle Scholar
  149. 149.
    Kang MS, Chun B, Kim SS (2001) Surface modification of polypropylene membrane by low-temperature plasma treatment. J Appl Polym Sci 81:1555–1566CrossRefGoogle Scholar
  150. 150.
    Zanini S, Muller M, Riccardi C, Orlandi M (2007) Polyethylene glycol graftin on polypropylene membranes for anti-fouling properties. Plasma Chem Plasma Process 27:446–457CrossRefGoogle Scholar
  151. 151.
    Kull KR, Steen ML, Fisher ER (2005) Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. J Membrane Sci 246:203–215CrossRefGoogle Scholar
  152. 152.
    Wu YJ, Timmons RB, Jen JS, Molock FE (2000) Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer. Colloid Surface B 18:234–248CrossRefGoogle Scholar
  153. 153.
    Beyer D, Knoll W, Ringsdorf H, Wang J-H, Timmons RB, Sluka P (1997) Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether. J Biomed Mater Res 36:181–189CrossRefGoogle Scholar
  154. 154.
    Schofield WC, Badyal JP (2009) A substrate-independent approach for bactericidal surfaces. Appl Mater Inter 1:2763–2767CrossRefGoogle Scholar
  155. 155.
    Wood TJ, Hurst GA, Schofield WCE, Thompson RL, Oswald G, Evans JSO, Sharples G, Pearson C, Petty MC, Badyal JPS (2012) Electroless deposition of multi-functional zinc oxide surfaces displaying photoconductive, superhydrophobic, photowetting, and antibacterial properties. J Mater Chem 22:3859–3867CrossRefGoogle Scholar
  156. 156.
    Badyal JPS, Teare DOH, Schofield WC (2009) Patent application title: method for producing, and a substrate with, a surface with specific characteristics—patent office: United States of America patent and trademark office. Published patent application (USPTO)—publication date: 11/19/2009—United States patent application 20090286435Google Scholar
  157. 157.
    Sevast’yanov VI, Vasilets VN (2209) Plasmochemical modifications of fluorocarbon polymers for creation of new hemocompatible materials. Russ J Gen Chem 79:596–605Google Scholar
  158. 158.
    Rhodes NP, Wilson DJ, Williams RL (2007) The effect of gas plasma modification on platelet and contact phase activation processes. Biomaterials 28:4561–4570CrossRefGoogle Scholar
  159. 159.
    Steffen HJ, Schmidt J, Gonzalez-Elipe A (2000) Biocompatible surfaces by immobilization of heparin on diamond-like carbon films deposited on various substrates. Surf Interf Anal 29:386–391CrossRefGoogle Scholar
  160. 160.
    Topala I, Dumitrascu N, Pohoatoa V (2007) Influence of plasma treatments on the hemocompatibility of PET and PET + TiO2 films. Plasma Chem Plasma Process 27:95–112CrossRefGoogle Scholar
  161. 161.
    Want J, Chen JY, Yang P, Leng YW, Wan GJ, Sun H, Zhao AS, Huang N, Chu PK (2006) In vitro platelet adhesion and activation of polyethylene terephthalate modified by acetylene plasma immersion ion implantation and deposition. Nucl Instrum Meth B 242:12–14ADSCrossRefGoogle Scholar
  162. 162.
    Kumar DS, Fujioka M, Asano K, Shoji A, Jayakrishnan A, Yoshida Y (2007) Surface modification of poly(ethylene terephthalate) by plasma polymerization of poly(ethylene glycol). J Mater Sci Mater Med 18:1831–1835CrossRefGoogle Scholar
  163. 163.
    Chen Y, Liu P (2004) Surface modification of polyethylene by plasma pre-treatment and UV-induced graft polymerization for improvement of antithrombogenity. J Appl Polym Sci 93:2014–2018CrossRefGoogle Scholar
  164. 164.
    Kwon OH, Nho YC, Chen J (2003) Surface modification of polypropylene film by radiation-induced grafting and its blood compatibility. J Appl Polym Sci 88:1726–1736CrossRefGoogle Scholar
  165. 165.
    Wilson DJ, Rhodes NP, Williams RL (2003) Surface modification of a segmented polyetherurethane using a low-powered gas plasma and its influence on the activation of the coagulation system. Biomaterials 24:5069–5081CrossRefGoogle Scholar
  166. 166.
    Pinto S, Alves P, Matos CM, Santos AC, Rodrigues LR, Teixeira JA, Gil MH (2010) Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloid Surface B 81:20–26CrossRefGoogle Scholar
  167. 167.
    Reprinted from Biochimica et Biophysica Acta 1472, Chu CFL, Lu A, Liszkowski M, Siphia R (2010) Enhanced growth of animal and human endothelial cells on biodegradable polymers, pp 479–485, Copyright (2010), with permission from ElsevierGoogle Scholar
  168. 168.
    Reprinted from Biomaterials 28, Pompe T, Keller K, Mothes G, Nitschke M, Teese M (2007) Surface modification of poly(hydroxybutyrate) films to control cell-matrix adhesion, pp 28–37, Copyright (2007), with permission from ElsevierGoogle Scholar
  169. 169.
    Reprinted from Biointerphases 5, Xia Y, Boey F, Venkatraman SS (2010) Surface modification of poly(L-lactic acid) with biomolecules to promote endothelialization, pp 32–40, Copyright (2010) with permission from Springer Science + Business Media B.V.Google Scholar
  170. 170.
    Reprinted from Biomaterials 25, Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized ply (l-lysine)-grafted-poly(ethylene glycol) copolymers, pp 4135–4148, Copyright (2004), with permission from ElsevierGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tinneke Jacobs
    • 1
    Email author
  • Rino Morent
    • 1
  • Nathalie De Geyter
    • 1
  • Peter Dubruel
    • 2
  • Christophe Leys
    • 1
  1. 1.Research Unit Plasma Technology (RUPT), Department Of Applied Physics, Faculty of EngineeringGhent UniversityGhentBelgium
  2. 2.Polymer Chemistry and Biomaterials Group, Department of Organic Chemistry, Faculty of SciencesGhent UniversityGhentBelgium

Personalised recommendations