Plasma Chemistry and Plasma Processing

, Volume 32, Issue 5, pp 959–968 | Cite as

Characterization of RF Discharge in Liquid n-Hexane and its Application to Synthesize Carbon Nano-Particles

  • Feisal Kroushawi
  • Hamid LatifiEmail author
  • Seyed Hossein Hosseini
  • Mostafa Peysokhan
  • Hamed Nikbakht
  • Yaser Silani
  • Hamid Ghomi
Original Paper


The RF plasma discharge in liquid n-hexane is used to synthesize carbon nanoparticles. The results show that amorphous carbon nanoparticles with size of 5–25 nm are the main product in the plasma in liquid n-hexane. Carbon nano-tubes of average diameter of 19 nm and length of 500 nm are also observed. The energy efficiency for carbon nanoparticles production is 2.9 mg/kJ which is more than 10 times larger than that of typical arc discharge synthesis method. The high speed observation indicates that the RF plasma in liquid has an alternating behaviour and it does not continuously emit light. The OES results show that H and C2 are the main observed species in the plasma. Based on the OES data, it is shown that plasma temperature is 4,030 K and the electron density is 2.54 × 1022 m−3. Our results suggest that this method can be considered as a new route for carbon nanostructures production.


RF discharge in liquid Carbon nano-particles Optical emission spectroscopy Vibrational temperature Boltzmann plot 


  1. 1.
    Ray SC, Saha A, Jana NR, Sarkar R (2009) J Phys Chem C 113:18546–18551CrossRefGoogle Scholar
  2. 2.
    Goncalves H, Jorge PAS, Fernandes JRA, Esteves da Silva JG (2010) Sens Actuators B 145:702–707CrossRefGoogle Scholar
  3. 3.
    Sudhakara PK, Chuang M, Annie Ho JA (2012) Talanta 88:445–449CrossRefGoogle Scholar
  4. 4.
    Park KH, Bae S, Lee S, Koh KH (2006) Curr Appl Phys 6:1048–1053ADSCrossRefGoogle Scholar
  5. 5.
    Khaydarov RA, Khaydarov RR, Gapurova O (2010) Water Res 44:1927–1933CrossRefGoogle Scholar
  6. 6.
    Sun Y, Zhou B, Lin Y, Wang W, Shiral Fernando KA, Pathak PJ (2006) Am Chem Soc 128:7756–7757CrossRefGoogle Scholar
  7. 7.
    Wesolowski MJ, Kuzmin S, Moores B, Wales B, Karimi R, Zaidi AA, Leonenko Z, Sanderson JH, Duley WW (2011) Carbon 49:625–630CrossRefGoogle Scholar
  8. 8.
    Sergiienko R, Shibata E, Suwa H, Nakamura T, Akase Z, Murakami Y, Shindo D (2006) Ultrason Sonochem 13:6–12CrossRefGoogle Scholar
  9. 9.
    Charinpanitkul T, Soottitantawat A, Tonanon N, Tanthapanichakoon W (2009) Mater Chem Phys 116:125–128CrossRefGoogle Scholar
  10. 10.
    Sano N (2004) Mater Chem Phys 88:235–238CrossRefGoogle Scholar
  11. 11.
    Ikeda T, Kaida S, Satou T, Suda Y, Takikawa H, Tanoue H, Oke S, Ue H, Okawa T, Aoyagi N, Shimizu K (2011) Jpn J Appl Phys 50:01AF13Google Scholar
  12. 12.
    Imasaka K, Kanatake Y, Ohshiro Y, Suehiro J, Hara M (2006) Thin Solid Films 506–507:250–254CrossRefGoogle Scholar
  13. 13.
    Rahy A, Zhou C, Zheng J, Park SY, Kim MJ, Jang I, Cho SJ, Yang DJ (2012) Carbon 50:1298–1302CrossRefGoogle Scholar
  14. 14.
    Liu B, Huang H, Zhang F, Zhou Y, Li W, Zhang J (2012) Mater Lett 66:199–202CrossRefGoogle Scholar
  15. 15.
    Ishigami M, Cumings J, Zettl A, Chen S (2000) Chem Phys Lett 319:457ADSCrossRefGoogle Scholar
  16. 16.
    Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga GAJ (2001) Nature 414:506ADSCrossRefGoogle Scholar
  17. 17.
    Hsin YL, Hwang KC, Chen RR, Kai JJ (2001) Adv Mater 13:830CrossRefGoogle Scholar
  18. 18.
    Sano N (2004) J Phys D Appl Phys 37:L17–L20ADSCrossRefGoogle Scholar
  19. 19.
    Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T (2006) Appl Phys Lett 88:211503ADSCrossRefGoogle Scholar
  20. 20.
    Kroushawi F, Panahpour A, Majidof MM, Latifi H (2010) Proceeding of 63rd Annual Gaseous Electronics Conference and 7th International Conference on Reactive, 55(7), October 4–8. France, ParisGoogle Scholar
  21. 21.
    Nomura S, Toyota H, Tawara M, Yamashita H, Matsumoto K (2006) Appl Phys Lett 88:231502ADSCrossRefGoogle Scholar
  22. 22.
    Bruggeman P, Leys C (2009) J Phys D Appl Phys 42:053001ADSCrossRefGoogle Scholar
  23. 23.
    Babaeva NY, Kushner MJ (2009) J Phys D Appl Phys 42:132003ADSCrossRefGoogle Scholar
  24. 24.
    Babaeva NY, Kushner MJ (2008) IEEE Trans Plasma Sci 36:892ADSCrossRefGoogle Scholar
  25. 25.
    Harilal SS, Issac RC, Bindhu CV, Nampoori VPN, Vallabhan CPG (1997) J Phys D Appl Phys 30:1703–1709ADSCrossRefGoogle Scholar
  26. 26.
    Al-Shboul KF, Harilal SS, Hassanein A, Polek M (2011) J Appl Phys 109:053302ADSCrossRefGoogle Scholar
  27. 27.
    Motaung DE, Moodley MK, Manikandan E, Coville NJ (2010) J Appl Phys 107:044308ADSCrossRefGoogle Scholar
  28. 28.
    Dwivedi RK, Thareja RK (1995) Surf Coat Technol 73:170–176CrossRefGoogle Scholar
  29. 29.
    Kunze HJ (2009) Introduction to Plasma Spectroscopy. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  30. 30.
    Griem HR (1964) Plasma spectroscopy. MacGrow-Hill, New YorkGoogle Scholar
  31. 31.
    Bystrzejewski M, Rummeli MH, Gemming T, Lange H, Huczko A (2010) New Carbon Mat 25:1–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Feisal Kroushawi
    • 1
  • Hamid Latifi
    • 1
    Email author
  • Seyed Hossein Hosseini
    • 1
  • Mostafa Peysokhan
    • 1
  • Hamed Nikbakht
    • 1
  • Yaser Silani
    • 1
  • Hamid Ghomi
    • 1
  1. 1.Laser and Plasma Research InstituteShahid Beheshti UniversityEvin, TehranIran

Personalised recommendations