Plasma Chemistry and Plasma Processing

, Volume 32, Issue 5, pp 991–1023

Decomposition of Acetaldehyde in Atmospheric Pressure Filamentary Nitrogen Plasma

  • O. Koeta
  • N. Blin-Simiand
  • W. Faider
  • S. Pasquiers
  • A. Bary
  • F. Jorand
Original Paper

Abstract

The removal of 500 ppm acetaldehyde in nitrogen at 1 bar is characterized in a pulse dielectric barrier discharge generating a spatial random distribution of plasma filaments. The identification and the quantification of numerous by-products are performed. At 20 °C, CH3CHO is efficiently dissociated, probably owing to quenching of N2 metastable states. The most abundant by-products are CO, H2, and CH4, in consistency with the three important exit channels for the quenching of the N2(A3Σu+) state by CH3CHO proposed by Faider et al. (2011). In order of importance, other products are HCN, C2H6, CH3CN, HNCO, CO2, CH3COCH3, C2H4, C2H5CN, NH3, C2H2, and a group of nitriles and of ketones. An increase of the temperature from 20 °C up to 300 °C induces a strong decrease of the removal characteristic energy, but the by-products types remain unchanged. Probably the reaction of H with CH3CHO plays a role in the removal of the molecule at 300 °C.

Keywords

Dielectric barrier discharge Acetaldehyde Nitrogen Plasma kinetic 

References

  1. 1.
    Vercammen K, Berezin A (1997) J Adv Oxid Technol 2:312Google Scholar
  2. 2.
    Rosocha L, Korzekwa R (1999) J Adv Oxid Technol 4:247Google Scholar
  3. 3.
    Hackam R, Akiyama H (2000) IEEE Trans Dielect Elect Ins 7:654CrossRefGoogle Scholar
  4. 4.
    Yan K, van Heesch E, Pemen A, Huijbrechts P (2001) Plasma Chem Plasma Proc 21:107CrossRefGoogle Scholar
  5. 5.
    Mok Y, Nam C, Cho M, Nam I-S (2002) IEEE Trans Plasma Sci 30:408ADSCrossRefGoogle Scholar
  6. 6.
    Pasquiers S (2004) Eur Phys J Appl Phys 28:319ADSCrossRefGoogle Scholar
  7. 7.
    Kim H-H (2004) Plasma Process Polym 1:91CrossRefGoogle Scholar
  8. 8.
    Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324CrossRefGoogle Scholar
  9. 9.
    Chen H, Lee H, Chen S, Chang M, Yu S, Li S (2009) Environ Sci Technol 43:2216CrossRefGoogle Scholar
  10. 10.
    Kim H-H, Ogata A (2011) Eur Phys J Appl Phys 55:13806ADSCrossRefGoogle Scholar
  11. 11.
    Destaillats H, Maddalena R, Singer B, Hodgson A, McKone T (2008) Atmos Environ 42:1371CrossRefGoogle Scholar
  12. 12.
    Graham L, Belisle S, Baas C-L (2008) Atmos Environ 42:4498CrossRefGoogle Scholar
  13. 13.
    Zlotopol’skii V, Smolenskaya T (1996) High Energy Chem 30:188Google Scholar
  14. 14.
    Kinoshita K, Fujiyama Y, Kim H, Katsura S, Mizuno A (1997) J Electrostat 42:83CrossRefGoogle Scholar
  15. 15.
    Lee H, Chang M (2001) Plasma Chem Plasma Proc 21:329MathSciNetCrossRefGoogle Scholar
  16. 16.
    Koeta O, Blin-Simiand N, Pasquiers S, Bary A, Jorand F, Postel C (2010) 12th international symposium high pressure low temp plasma chemistry, Trenčianske Teplice (Slovakia), Book of contributed papers (Országh J, Papp P, Matejčík Š (eds) Comenius University, Bratislava, Slovakia), p 402Google Scholar
  17. 17.
    Faungnawakij K, Sano N, Yamamoto D, Kanki T, Charinpanitkul T, Tanthapanichakoon W (2004) Chem Eng J 103:115CrossRefGoogle Scholar
  18. 18.
    Klett C, Touchard S, Vega A, Redolfi M, Duten X, Hassouni K (2011) Acta Tech 56:T43Google Scholar
  19. 19.
    Magne L, Pasquiers S, Edon V, Jorand F, Postel C, Amorim J (2005) J Phys D Appl Phys 38:3446ADSCrossRefGoogle Scholar
  20. 20.
    Faider W, Pasquiers S, Blin-Simiand N, Jeanney P, Jorand F, Magne L (2011) 20th international symposium on plasma chemistry, Philadelphia, USA. Contributed papers (A.J. Drexel Plasma Institute, http://ispc20.plasmainstitute.org/) no196
  21. 21.
    Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher J-R (2008) Plasma Chem Plasma Proc 28:429CrossRefGoogle Scholar
  22. 22.
    Blin-Simiand N, Pasquiers S, Jorand F, Postel C, Vacher J-R (2009) J Phys D Appl Phys 42:122003ADSCrossRefGoogle Scholar
  23. 23.
    Molspec: Synthetic molecular spectra generator based on the HITRAN database. Laser Components GmbH, Olching, Germany. http://www.lasercomponents.com
  24. 24.
    Roberts J, Veres P, Warneke C, Neuman J, Washenfelder R, Brown S, Baasandorj M, Burkholder J, Burling I, Johnson T, Yokelson R, de Gouw J (2010) Atmos Meas Tech Discuss 3:301ADSCrossRefGoogle Scholar
  25. 25.
    Penetrante B, Hsiao M, Bardsley J, Merritt B, Vogtlin G, Wallman P (1996) Pure Appl Chem 68:1083CrossRefGoogle Scholar
  26. 26.
    Hsiao M, Penetrante B, Merritt B, Vogtlin G, Wallman P (1997) J Adv Oxid Technol 2:306Google Scholar
  27. 27.
    Chang M, Chang C-C (1997) Am Inst Chem Eng (AIChE) J 43:1325CrossRefGoogle Scholar
  28. 28.
    Song Y, Cha M, Kim Y, Kim K, Kim S, Han S, Choi K (2003) J Adv Oxid Technol 6:11Google Scholar
  29. 29.
    Demidyuk V, Whitehead J (2007) Plasma Chem Plasma Proc 27:85CrossRefGoogle Scholar
  30. 30.
    Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C (2008) 11th international symposium on high pressure low temp plasma chemistry, Oleron Island (France), contributed papers vol 2 (Gherardi N (ed) Université Paul Sabatier, Toulouse, France) p 332Google Scholar
  31. 31.
    Jarrige J, Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C (2005) 17th international symposium on plasma chemistry, Toronto Canada), contributed papers (Mostaghimi J, Coyle T, Pershin V, Salimi Jazi H (eds) University of Toronto, Toronto, Canada) p 248Google Scholar
  32. 32.
    Falkenstein Z (1999) J Appl Phys 85:525ADSCrossRefGoogle Scholar
  33. 33.
    Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T (2002) Appl Catal A 236:9CrossRefGoogle Scholar
  34. 34.
    Frisch M et al (2004) Gaussian 03, Revision C.02. Gaussian Inc., WallingfordGoogle Scholar
  35. 35.
    C. Klett (2011) PhD thesis, Université Paris 13, FranceGoogle Scholar
  36. 36.
    Herron J (1999) J Phys Chem Ref Data 28:1453ADSCrossRefGoogle Scholar
  37. 37.
    Magne L, Pasquiers S, Gadonna K, Jeanney P, Blin-Simiand N, Jorand F, Postel C (2009) J Phys D Appl Phys 42:165203ADSCrossRefGoogle Scholar
  38. 38.
    Fresnet F, Baravian G, Magne L, Pasquiers S, Postel C, Puech V, Rousseau A (2000) Appl Phys Lett 77:4118ADSCrossRefGoogle Scholar
  39. 39.
    Navaroo-González R, Ramirez S-I (1997) Adv Space Res 19:1121ADSCrossRefGoogle Scholar
  40. 40.
    Moreau N, Pasquiers S, Blin-Simiand N, Magne L, Jorand F, Postel C, Vacher J-R (2010) J Phys D Appl Phys 43:285201CrossRefGoogle Scholar
  41. 41.
    Piper L (1987) J Chem Phys 87:1625ADSCrossRefGoogle Scholar
  42. 42.
    Balla R-J, Casleton K-H, Adams J-S, Pasternack L (1991) J Phys Chem 95:8694CrossRefGoogle Scholar
  43. 43.
    Sims I-R, Queffelec J-L, Travers D, Rowe B-R, Herbert L-B, Karthäuser J, Smith I-WM (1993) Chem Phys Lett 211:461ADSCrossRefGoogle Scholar
  44. 44.
    Gautier T, Carrasco N, Buch A, Szopa C, Sciamma-O’Brien E, Cernogora G (2011) Icarus 213:625ADSCrossRefGoogle Scholar
  45. 45.
    Butterfield M-T, Yu T, Lin M-C (1993) Chem Phys 169:129CrossRefGoogle Scholar
  46. 46.
    Gannon K-L, Glowacki D-R, Blitz M-A, Hughes K-J, Pilling M-J, Seakins P-W (2007) J Phys Chem A 111:6679CrossRefGoogle Scholar
  47. 47.
    Trevitt A-J, Goulay F, Meloni G, Osborn D-L, Taatjes C-A, Leone S-R (2009) Int J Mass Spectrom 280:113CrossRefGoogle Scholar
  48. 48.
    Trevitt A-J, Soorkia S, Savee J-D, Selby T-S, Osborn D-L, Taatjes C-A, Leone S-R (2011) J Phys Chem A 115:13467CrossRefGoogle Scholar
  49. 49.
    Balucani N, Asvany O, Osamura Y, Huang L-C-L, Lee Y-T, Kaiser R-I (2000) Planet Space Sci 48:447ADSCrossRefGoogle Scholar
  50. 50.
    Balucani N (2009) Int J Mol Sci 10:2304CrossRefGoogle Scholar
  51. 51.
    Balucani N, Cartechini L, Alagia M, Casavecchia P, Volpi G-G (2000) J Phys Chem A 104:5655CrossRefGoogle Scholar
  52. 52.
    Kakkar R, Walia V (1992) Int J Quantum Chem 44:363CrossRefGoogle Scholar
  53. 53.
    Magne L, Blin-Simiand N, Gadonna K, Jeanney P, Jorand F, Pasquiers S, Postel C (2009) Eur Phys J Appl Phys 47:22816CrossRefGoogle Scholar
  54. 54.
    Mallard W, Westley F, Herron J, Hampson R, Frizzell D (1998) NIST Chemical kinetics database (version 2Q98)Google Scholar
  55. 55.
    Baulch D, Cox R, Hampson R, Kerr J, Troe J, Watson R (1984) J Phys Chem Ref Data 13:1259ADSCrossRefGoogle Scholar
  56. 56.
    Tsang W, Hampson R (1986) J Phys Chem Ref Data 15:1087ADSCrossRefGoogle Scholar
  57. 57.
    Tsang W, Herron J (1991) J Phys Chem Ref Data 20:609ADSCrossRefGoogle Scholar
  58. 58.
    Baulch D, Cobos C, Cox R, Esser C, Frank P, Just Th, Kerr J, Pilling M, Troe J, Walker R, Warnatz J (1992) J Phys Chem Ref Data 21:411ADSCrossRefGoogle Scholar
  59. 59.
    Tsang W (1991) J Phys Chem Ref Data 21:753ADSCrossRefGoogle Scholar
  60. 60.
    Baulch D, Cobos C, Cox R, Frank P, Hayman G, Just Th, Kerr J, Murrells T, Pilling M, Troe J, Walker R, Warnatz J (1995) J Phys Chem Ref Data 24:1609 Erratum: same authors (1994) J Phys Chem Ref Data 23:847Google Scholar
  61. 61.
    Westley F (1980) N.B.S. Standard Ref Data, US vol 67Google Scholar
  62. 62.
    Tsai C, McFadden D (1990) J Phys Chem 94:3298CrossRefGoogle Scholar
  63. 63.
    Nesbitt F, Marston G, Stief L (1990) J Phys Chem 94:4946CrossRefGoogle Scholar
  64. 64.
    Dautov N, Starik A-M (1997) Kinet Catalyst 38:185Google Scholar
  65. 65.
    Legrand J-C, Diamy A-M, Hrach R, Hrackova V (1997) Contrib Plasma Phys 37:521ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • O. Koeta
    • 1
    • 2
  • N. Blin-Simiand
    • 1
  • W. Faider
    • 1
  • S. Pasquiers
    • 1
  • A. Bary
    • 2
  • F. Jorand
    • 1
  1. 1.Laboratoire de Physique des Gaz et des PlasmasCNRS (UMR8578), Université Paris-SudOrsay cedexFrance
  2. 2.Laboratoire de Chimie Analytique de Radiochimie et d′ElectrochimieUniversité de OuagadougouOuagadougouBurkina Faso

Personalised recommendations