Plasma Chemistry and Plasma Processing

, Volume 32, Issue 5, pp 1075–1091 | Cite as

Treatment and Stability of Sodium Hyaluronate Films in Low Temperature Inductively Coupled Ammonia Plasma

  • O. GrulichEmail author
  • Z. Kregar
  • M. Modic
  • A. Vesel
  • U. Cvelbar
  • A. MracekEmail author
  • P. Ponizil
Original Paper


Surface of sodium hyaluronate films was modified in the inductively coupled low temperature ammonia plasma. The amount of bonded nitrogen was measured by the XPS method. The optical emission and temperature of the sample surface were measured during sample processing. Increased processing time and increased discharge power caused a rise of nitrogen concentration on the surface of hyaluronan films, though this effect is limited due to surface saturation and sample destruction at elevated discharge power.


Hyaluronan Surface modification Surface treatment Low-temperature plasma XPS 



This article was created with support of the internal grant of TBU in Zlín no. IGA/13/FT/11/D and no. IGA/26/FT/10/D funded from the resources of specific university research, grant GAČR 104/09/H080 funded from Research and Development Council of the Czech Republic, national budget of Czech Republic and Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111). The authors kindly acknowledge dr. Zoran Arsov (Laboratory of Biophysics, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia) for ATR-FTIR measurement.


  1. 1.
    Meyer K, Palmer J (1934) The polysaccharide of the vitreous humor. J Biol Chem 107:629–634Google Scholar
  2. 2.
    Leach JB, Schmidt CE (2004) Hyaluronan. In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, pp 779–89.Google Scholar
  3. 3.
    Lapcik L Jr, Lapcik L, De Smedt S, Demeester J, Chabrecek P (1998) Hyaluronan: preparation, structure, properties, and applications. Chem Rev 98:2663–2684CrossRefGoogle Scholar
  4. 4.
    Barbucci R, Magnani A, Baszkin A, Da Costa ML, Bauser H, Hellwig G, Martuscelli E, Cimmino S (1993) Physico-chemical surface characterization of hyaluronic acid derivatives as a new class of biomaterials. J Biomater Sci Polym Ed 4:245–273CrossRefGoogle Scholar
  5. 5.
    Pozo MA, Balazs EA, Belmonte C (1997) Reduction of sensory responses to passive movements of inflamed knee joints by hylan, a hyaluronan derivative. Exp Brain Res 116:3–9CrossRefGoogle Scholar
  6. 6.
    Peyron JG (1993) A new approach to the treatment of osteoarthritis: viscosupplementation. Osteoarthr Cartil 1:85–87CrossRefGoogle Scholar
  7. 7.
    Day AJ, de la Motte CA (2005) Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol 26:637–643. doi: 10.1016/ CrossRefGoogle Scholar
  8. 8.
    Laurent T, Fraser J (1992) Hyaluronan. FASEB J 6:2397–2404Google Scholar
  9. 9.
    Prusova A, Smejkalova D, Chytil M, Velebny V, Kucerik J (2010) An alternative DSC approach to study hydration of hyaluronan. Carbohydr Polym 82:498–503. doi: 10.1016/j.carbpol.2010.05.022 CrossRefGoogle Scholar
  10. 10.
    Chen WY, Abatangelo G (1999) Functions of hyaluronan in wound repair. Wound Repair Regen 7:79–89zbMATHCrossRefGoogle Scholar
  11. 11.
    Cowman MK, Li M, Dyal A, Balazs EA (2000) Tapping mode atomic force microscopy of the hyaluronan derivative, hylan A. Carbohydr Polym 41:229–235. doi: 16/S0144-8617(99)00141-1 CrossRefGoogle Scholar
  12. 12.
    Laurent TC (1970) Structure of hyaluronic acid. In: Balazs EA (ed) Chemistry and molecular biology of the intercellular matrix. Academic Press, London, pp 703–732Google Scholar
  13. 13.
    Benesova K, Pekar M, Lapcik L, Kucerik J (2006) Stability evaluation of n-alkyl hyaluronic acid derivates by DSC and TG measurement. J Therm Anal Calorim 83:341–348. doi: 10.1007/s10973-005-6870-x CrossRefGoogle Scholar
  14. 14.
    Scott JE (1989) Secondary structures in hyaluronan solutions: chemical and biological implications. Ciba Found Symp 143:6–15 discussion 15–20, 281–285Google Scholar
  15. 15.
    Drimalova E, Velebny V, Sasinkova V, Hromadkova Z, Ebringerova A (2005) Degradation of hyaluronan by ultrasonication in comparison to microwave and conventional heating. Carbohydr Polym 61:420–426. doi: 16/j.carbpol.2005.05.035 CrossRefGoogle Scholar
  16. 16.
    West DC, Fan PD (2002) Hyaluronan oligosaccharides promote wound repair. In: Kohn EC, Fan PD (eds) The new angiotherapy. Humana Pres, Totowa, pp 177–186Google Scholar
  17. 17.
    Mashimoto M, Saegusa H, Chiba S, Kitagawa H, Myoshi T (1988) Japanese Patent 63,123,392Google Scholar
  18. 18.
    Akasaka H, Seto S, Yanagi M, Fukushima S, Mitsui T (1988) Industrial production of hyaluronic acid by Streptococcus zooepidemicus. J Soc Cosmet Chem Jap 22:35–42Google Scholar
  19. 19.
    Swann DA, Sullivan BP, Jamieson G, Richardson KR, Singh T (1990) Biosynthesis of hyaluronic acid. EP 19,900,106,320Google Scholar
  20. 20.
    Kirker KR, Luo Y, Nielson JH, Shelby J, Prestwich GD (2002) Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 23:3661–3671. doi: 16/S0142-9612(02)00100-X CrossRefGoogle Scholar
  21. 21.
    Coghlan A (1995) Surgical film resolves sticky situation. New Sci 146:23Google Scholar
  22. 22.
    Toole BP (2001) Hyaluronan in morphogenesis. Semin Cell Dev Biol 12:79–87. doi: 06/scdb.2000.0244 CrossRefGoogle Scholar
  23. 23.
    Seckel BR, Jones D, Hekimian KJ, Wang KK, Chakalis DP, Costas PD (1995) Hyaluronic acid through a new injectable nerve guide delivery system enhances peripheral nerve regeneration in the rat. J Neurosci Res 40:318–324. doi: 10.1002/jnr.490400305 CrossRefGoogle Scholar
  24. 24.
    Hu M, Sabelman EE, Tsai C, Tan J, Hentz VR (2000) Improvement of Schwann cell attachment and proliferation on modified hyaluronic acid strands by polylysine. Tissue Eng 6:585–593. doi: 10.1089/10763270050199532 CrossRefGoogle Scholar
  25. 25.
    Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127CrossRefGoogle Scholar
  26. 26.
    Mlcochova P, Bystricky S, Steiner B, Machova E, Koos M, Velebny V, Krcmar M (2006) Synthesis and characterization of new biodegradable hyaluronan alkyl derivatives. Biopolymers 82:74–79. doi: 10.1002/bip.20461 CrossRefGoogle Scholar
  27. 27.
    Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, Kastenbauer E, Naumann A (1998) Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 42:172–181CrossRefGoogle Scholar
  28. 28.
    Britcher L, Kumar S, Griesser HJ, Siow KS (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Processes Polym 3:392–418. doi: 10.1002/ppap.200600021 CrossRefGoogle Scholar
  29. 29.
    Palumbo FS, Pitarresi G, Mandracchia D, Tripodo G, Giammona G (2006) New graft copolymers of hyaluronic acid and polylactic acid: synthesis and characterization. Carbohydr Polym 66:379–385. doi: 10.1016/j.carbpol.2006.03.023 CrossRefGoogle Scholar
  30. 30.
    Chu P, Chen J, Wang L, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng: R: Rep 36:143–206. doi: 10.1016/S0927-796X(02)00004-9 CrossRefGoogle Scholar
  31. 31.
    Yook JY, Jun J, Kwak S (2010) Amino functionalization of carbon nanotube surfaces with NH3 plasma treatment. Appl Surf Sci 256:6941–6944. doi: 16/j.apsusc.2010.04.075 ADSCrossRefGoogle Scholar
  32. 32.
    Wan Y, Tu C, Yang J, Bei J, Wang S (2006) Influences of ammonia plasma treatment on modifying depth and degradation of poly(L-lactide) scaffolds. Biomaterials 27:2699–2704. doi: 10.1016/j.biomaterials.2005.12.007 CrossRefGoogle Scholar
  33. 33.
    Kull KR, Steen ML, Fisher ER (2005) Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. J Membr Sci 246:203–215. doi: 16/j.memsci.2004.08.019 CrossRefGoogle Scholar
  34. 34.
    Acquaviva S, Giorgi MLD (2002) High-resolution investigations of C2 and CN optical emissions in laser-induced plasmas during graphite ablation. J Phys B: At Mol Opt Phys 35:795–806. doi: 10.1088/0953-4075/35/4/304 ADSCrossRefGoogle Scholar
  35. 35.
    Mracek A, Lehocky M, Smolka P, Grulich O, Velebny V (2010) The allylamine grafting on the plasma pre-treated polyester nonwoven fabric: preparation, characterization and utilization. Fibers Polymers 11:1106–1110. doi: 10.1007/s12221-010-1106-5 CrossRefGoogle Scholar
  36. 36.
    Kregar Z, Biscan M, Milosevic S, Vesel A (2011) Monitoring oxygen plasma treatment of polypropylene with optical emission spectroscopy. IEEE Trans Plasma Sci 39:1239–1246. doi: 10.1109/TPS.2011.2123111 ADSCrossRefGoogle Scholar
  37. 37.
    Vesel A, Mozetic M, Hladnik A, Dolenc J, Zule J, Milosevic S, Krstulovic N, Klanjsek-Gunde M, Hauptman N (2007) Modification of ink-jet paper by oxygen-plasma treatment. J Phys D Appl Phys 40:3689–3696. doi: 10.1088/0022-3727/40/12/022 ADSCrossRefGoogle Scholar
  38. 38.
    Krstulovic N, Labazan I, Milosevic S, Cvelbar U, Vesel A, Mozetic M (2006) Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil. J Phys D Appl Phys 39:3799–3804. doi: 10.1088/0022-3727/39/17/014 ADSCrossRefGoogle Scholar
  39. 39.
    Vesel A, Mozetic M, Drenik A, Milosevic S, Krstulovic N, Balat-Pichelin M, Poberaj I, Babic D (2006) Cleaning of porous aluminium titanate by oxygen plasma. Plasma Chem. Plasma P 26:577–584. doi: 10.1007/s11090-006-9025-3 CrossRefGoogle Scholar
  40. 40.
    Kral M, Ogino A, Nagatsu M (2008) Effect of hydrogen on amino group introduction onto the polyethylene surface by surface-wave plasma chemical modification. J Phys D Appl Phys 41:105213. doi: 10.1088/0022-3727/41/10/105213 ADSCrossRefGoogle Scholar
  41. 41.
    Suraj KS, Bharathi P, Prahlad V, Mukherjee S (2007) Near cathode optical emission spectroscopy in N2–H2 glow discharge plasma. Surf Coat Technol 202:301–309. doi: 16/j.surfcoat.2007.05.063 CrossRefGoogle Scholar
  42. 42.
    Richter K, Drescher K (1995) Pyrometric substrate temperature measurement during plasma etching. Surf Coat Technol 74–75:546–551. doi: 16/0257-8972(95)08306-5 CrossRefGoogle Scholar
  43. 43.
    Huang F, Chen L, Wang H, Yan Z (2010) Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chem Eng J 162:250–256. doi: 10.1016/j.cej.2010.05.041 CrossRefGoogle Scholar
  44. 44.
    Medard N, Soutif J-C, Poncin-Epaillard F (2002) Characterization of CO2 plasma-treated polyethylene surface bearing carboxylic groups. Surf Coat Technol 160:197–205. doi: 10.1016/S0257-8972(02)00407-3 CrossRefGoogle Scholar
  45. 45.
    Kregar Z, Milosevic S, Vesel A (2011) Optical emission from oxygen plasma in E and H modes. IEEE Trans Plasma Sci 39:2502–2503. doi: 10.1109/TPS.2011.2160733 ADSCrossRefGoogle Scholar
  46. 46.
    Biscan M, Kregar Z, Krstulovic N, Milosevic S (2010) Time resolved spectroscopic characterization of a-C:H deposition by methane and removal by oxygen inductively coupled RF plasma. Plasma Chem Plasma Process 30:401–412. doi: 10.1007/s11090-010-9226-7 CrossRefGoogle Scholar
  47. 47.
    Abdelli-Messaci S, Kerdja T, Bendib A, Malek S (2005) CN emission spectroscopy study of carbon plasma in nitrogen environment. Spectrochim Acta, B 60:955–959. doi: 16/j.sab.2005.07.002 ADSCrossRefGoogle Scholar
  48. 48.
    Petitjean L, Ricard A (1984) Emission spectroscopy study of N2–H2 glow discharge for metal surface nitriding. J of Phys D: Appl Phys 17:919–929. doi: 10.1088/0022-3727/17/5/008., Accessed 30 Sept 2011Google Scholar
  49. 49.
    Konjevic N (2002) Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000). J Phys Chem Ref Data 31:819. doi: 10.1063/1.1486456 ADSCrossRefGoogle Scholar
  50. 50.
    Grulich O (2009) The surface modification of hyaluronan thin films by plasma treatment. Master thesis, Tomas Bata University, Zlin, Czech RepublicGoogle Scholar
  51. 51.
    Ogino A, Kral M, Narushima K, Yamashita M, Nagatsu M (2006) Surface amination of biopolymer using surface-wave excited ammonia plasma. Jpn J Appl Phys 45:8494–8497. doi: 10.1143/JJAP.45.8494 ADSCrossRefGoogle Scholar
  52. 52.
    Xiao Z, Kerm C, Mary C-P, Eng MB, Teik LS (2005) Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J Biomed Mater Res Pt A 73A:264–274CrossRefGoogle Scholar
  53. 53.
    Silva SS, Luna SM, Gomes ME, Benesch J, Pashkuleva I, Mano JF, Reis RL (2008) Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci 8:568–576. doi: 10.1002/mabi.200700264 CrossRefGoogle Scholar
  54. 54.
    Wang H, Fang Y-E, Yan Y (2001) Surface modification of chitosan membranes by alkane vapor plasma. J Mater Chem 11:1374–1377. doi: 10.1039/b009688l CrossRefGoogle Scholar
  55. 55.
    Alves CM, Yang Y, Carnes DL, Ong JL, Sylvia VL, Dean DD, Agrawal CM, Reis R (2007) Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials 28:307–315. doi: 16/j.biomaterials.2006.09.010 CrossRefGoogle Scholar
  56. 56.
    Spectroscopic Tools (2011) Science and fun pages. Accessed 30 Sept 2011
  57. 57.
    Infrared Spectroscopy of Natural Organic Molecules (2011) Princeton University webpage. Accessed 30 Sept 2011
  58. 58.
    Ibrahim M, Nada A, Kamal D (2005) Density functional theory and FTIR spectroscopic study of carboxyl group. Ind J Pure Appl Phys 43:911–917Google Scholar
  59. 59.
    IR Spectroscopy Tutorial: Carboxylic Acids (2011) University of Colorado, Boulder, Chemistry and Biochemistry Department webpage. Accessed 30 Sept 2011
  60. 60.
    Panchalingam V, Poon B, Huo HH et al (1993) Molecular surface tailoring of biomaterials via pulsed RF plasma discharges. J Biomater Sci Polym Ed 5:131–145CrossRefGoogle Scholar
  61. 61.
    Sluka P, Beyer D, Ringsdorf H, Knoll W (1999) Process for producing a surface coated with amino groups. US Patent 5,932,296Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics and Material Engineering, Faculty of TechnologyTomas Bata UniversityZlínCzech Republic
  2. 2.Institute of PhysicsZagrebCroatia
  3. 3.Institute Jožef StefanLjubljanaSlovenia
  4. 4.Centre of Polymer SystemsTomas Bata University in ZlínZlínCzech Republic

Personalised recommendations