Plasma Chemistry and Plasma Processing

, Volume 32, Issue 3, pp 495–518 | Cite as

Thermophysical Properties of High Temperature Reacting Mixtures of Carbon and Water in the Range 400–30,000 K and 0.1–10 atm. Part 2: Transport Coefficients

Original Paper

Abstract

The present contribution is continuation of Part 1: Equilibrium composition and thermodynamic properties. This paper is devoted to the calculation of transport properties of mixtures of water and carbon at high temperature. The transport properties, including electron diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are obtained by using the Chapman–Enskog method expanded to the third-order approximation (second-order for viscosity), taking only elastic processes into account. The calculations, which assume local thermodynamic equilibrium, are performed for atmospheric pressure plasmas in the temperature range from 400 to 30,000 K for pressures of 0. 10, 1.0, 3.0, 5.0 and 10.0 atm. with the results obtained are compared to those of previously published studies, and the reasons for discrepancies are analyzed. The results provide reliable reference data for simulation of plasmas in mixtures of carbon and water.

Keywords

Carbon Water Thermal plasmas Chapman–Enskog method Transport properties Viscosity Thermal conductivity Electrical conductivity Diffusion coefficient 

References

  1. 1.
    Wang WZ, Murphy AB, Rong MZ, Yan JD, Spencer JW, Fang MTC (2011) Thermophysical properties of high-temperature reacting mixtures of carbon and water in the range 400–30,000 K and 0.1–10 atm. Part 1: equilibrium composition and thermodynamic properties. Plasma Chem Plasma Process. doi:10.1007/s11090-011-9327-y
  2. 2.
    Aubreton J, Elchinger MF, Hacala A, Michon U (2009) Transport coefficients of typical biomass equimolar CO–H2 plasma. J Phys D Appl Phys 42:095206ADSCrossRefGoogle Scholar
  3. 3.
    Tanaka Y, Yamachi N, Matsumoto S, Kaneko S, Okabe S, Shibuya M (2008) Thermodynamic and transport properties of CO2, CO2–O2, and CO2–H2 mixtures at temperatures of 300 to 30,000 K and pressures of 0.1 to 10 MPa. Electr Eng. Japan 163:18–29CrossRefGoogle Scholar
  4. 4.
    Hirschfelder JO, Curtis CF, Bird RB (1964) Molecular theory of gases and liquids, 2nd edn. Wiley, New YorkGoogle Scholar
  5. 5.
    Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Ferziger JH, Kaper HG (1972) Mathematical theory of transport processes in gases. North-Holland, AmsterdamGoogle Scholar
  7. 7.
    Wang WZ, Rong MZ, Murphy AB, Wu Y, Spencer JW, Yan JD, Fang MTC (2011) Thermophysical properties of carbon–argon and carbon–helium plasmas. J Phys D Appl Phys 44:355207CrossRefGoogle Scholar
  8. 8.
    Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002) Transport coefficients including diffusion in a two-temperature argon plasma. J Phys D Appl Phys 35:981–991ADSCrossRefGoogle Scholar
  9. 9.
    Devoto RS (1973) Transport coefficients of ionized argon. Phys Fluids 16:616–623ADSCrossRefGoogle Scholar
  10. 10.
    Devoto RS (1967) Third approximation to the viscosity of multicomponent mixtures. Phys Fluids 10:2704–2706ADSCrossRefGoogle Scholar
  11. 11.
    Butler JN, Brokaw RS (1957) Thermal conductivity of gas mixtures in chemical equilibrium. J Chem Phys 26:1636–1643ADSCrossRefGoogle Scholar
  12. 12.
    Meador WE, Stanton LD (1965) Electrical and thermal properties of plasmas. Phys Fluids 8:1694–1703ADSCrossRefGoogle Scholar
  13. 13.
    Monchick L, Yun KS, Mason EA (1963) Formal kinetic theory of transport phenomena in. polyatomic gas mixtures. J Chem Phys 39:654–669ADSCrossRefGoogle Scholar
  14. 14.
    Hirschfelder JO (1957) Heat conductivity in polyatomic or electronically excited gases. Chem Phys 26:282–285ADSGoogle Scholar
  15. 15.
    Hirschfelder JO (1957) In: Proceedings of 6th international symposium on Combustion. Reinhold, New York, p 351Google Scholar
  16. 16.
    Sourd B, Aubreton J, Elchinger MF, Labrot M, Michon U (2006) High temperatures transport coefficients in e/C/H/N/O mixture. J Phys D Appl Phys 39:1105–1119ADSCrossRefGoogle Scholar
  17. 17.
    Aubreton J, Elchinger MF, Vinson JM (2009) Transport coefficients in water plasma: part I: equilibrium plasma. Plasma Chem Plasma Process 29:149–171CrossRefGoogle Scholar
  18. 18.
    André P, Aubreton J, Clain S (2010) Transport coefficients in thermal plasma. Applications to mars and titan atmospheres. Eur Phys J D 57:227–234ADSCrossRefGoogle Scholar
  19. 19.
    Paul P, Warnatz J (1998) In: A re-evaluation of the means used to calculate transport properties of reacting flows 27th symposium (international) on Combustion. The Combustion Institute, pp 495–504Google Scholar
  20. 20.
    Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F (2007) On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres. Chem Phys 338:62–68ADSCrossRefGoogle Scholar
  21. 21.
    Laricchiuta A, Colonna G, Bruno D, Celiberto R, Gorse C, Pirani F, Capitelli M (2007) Classical transport collision integrals for a Lennard–Jones like phenomenological model potential. Chem Phys Lett 445:133–139ADSCrossRefGoogle Scholar
  22. 22.
    Andrea L, Federico P (2008) A comparison of interatomic potentials for rare gas nanoaggregates. J Mol Struct (Theochem) 857:22–29Google Scholar
  23. 23.
    Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F (2009) High temperature Mars atmosphere. Part I: transport cross section. Eur Phys J D 54:607–612ADSCrossRefGoogle Scholar
  24. 24.
    Catalfamo C, Bruno D, Colonna G, Laricchiuta A, Capitelli M (2009) High temperature Mars atmosphere. Part II: transport properties. Eur Phys J D 54:613–621ADSCrossRefGoogle Scholar
  25. 25.
    Miller TM, Bederson B (1977) Atomic and molecular polarizabilities—a review of recent advances. Adv At Mol Phys 13:1–55CrossRefGoogle Scholar
  26. 26.
    Woon DE, Herbst E (2009) Computed dipole moments and dipole polarizabilies for neutral astromolecules. APJS 185:273–288ADSCrossRefGoogle Scholar
  27. 27.
    Olney TN, Cann NM, Cooper G, Brion CE (1997) Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. J Chem Phys 223:59–98Google Scholar
  28. 28.
    Lide DR (ed) (1994) CRC handbook of chemistry and physics, 7th edn. CRC, Boca RatonGoogle Scholar
  29. 29.
    Bose TK, Cole RH (1970) Dielectric and pressure virial coefficients of imperfect gases. II. CO2-argon mixtures. J Chem Phys 52:140–147ADSCrossRefGoogle Scholar
  30. 30.
    Du S, Francisco JS, Schenter GK, Iordanov TD, Garrett BC, Dupuis M, Li J (2006) The OH radical-H2O molecular interaction potential. J Chem Phys 124:22438CrossRefGoogle Scholar
  31. 31.
    Cybulski SM, Haley TP (2004) New approximations for calculating dispersion coefficients. J Chem Phys 121:7711–7716ADSCrossRefGoogle Scholar
  32. 32.
    Applequist J, Carl JR, Fung KK (1972) An atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J Am Chem Soc 94:2952–2960CrossRefGoogle Scholar
  33. 33.
    Stout JM, Dykstra CE (1994) Static dipole polarizabilities of organic molecules. Ab initio calculations and a predictive model. J Am Chem Soc 117:5127–5132CrossRefGoogle Scholar
  34. 34.
    (2004) In: Johnson III RD (ed) NIST Computational Chemistry Comparison and Benchmark Database, NIST standard reference database number 101, Release 10th ednGoogle Scholar
  35. 35.
    Barker JA, Fock W, Smith F (1964) Calculation of gas transport properties and the Interaction of argon atoms. Phys Fluids 7:897–903ADSMATHCrossRefGoogle Scholar
  36. 36.
    Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon–nitrogen, and argon–oxygen plasmas. Plasma Chem Plasma Process 14:451–490CrossRefGoogle Scholar
  37. 37.
    Thakkar A, Das AK (2001) Anisotropic polarizabilities and hyperpolarizabilities of second-period cations. J Mol Str (Theochem) 547:233CrossRefGoogle Scholar
  38. 38.
    Shevelko VP, Vinogradov AV (1979) Static dipole polarizability of atoms and ions in the Thomas-Fermi Model. Phys Scr 19:275–282ADSCrossRefGoogle Scholar
  39. 39.
    Alagia M, Brunetti BG, Candori P, Falcinelli S, Teixidor MM, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2004) Low-lying electronic states of HBr2+. J Chem Phys 120:6985–6991ADSCrossRefGoogle Scholar
  40. 40.
    Magnasco V, Ottonelli M (1999) Dipole polarizability pseudospectra and C6 dispersion coefficients for H2 +–H2 +. J Mol Struct Theochem 469:31–40CrossRefGoogle Scholar
  41. 41.
    Gorfinkiel JD, Tennyson J (2004) Electron–H3 + collisions at intermediate energies. J Phys B: At Mol Opt Phys 37:L343CrossRefGoogle Scholar
  42. 42.
    Pluta T, Sadlej AJ, Bartlett R (1988) Polarizability of OH. Chem Phys Lett 143:91–96ADSCrossRefGoogle Scholar
  43. 43.
    McDaniel EW, Mason EA (1973) The mobility and diffusion of ions in gases. John Wiley, New YorkGoogle Scholar
  44. 44.
    Maroulis G (1988) Electrical properties for HCO+ and NNH+ from fourthorder Moller-Plesset pertubation theory. Z Naturforsch 43:419–429Google Scholar
  45. 45.
    Chipot C, Dehez F, Angyan J, Millot C, Orozco M, Luque FJ (2001) Alternative approaches for the calculation of induction energies: Characterization, effectiveness, and pitfalls. J Phys Chem A 105:11505–11514CrossRefGoogle Scholar
  46. 46.
    Bruno D, Catalfamo C, Capitelli M, Colonna G, Pascale ODE, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F (2010) Transport properties of high-temperature Jupiter atmosphere components. Phys Plasmas 17:112315ADSCrossRefGoogle Scholar
  47. 47.
    Krstic PS, Schultz DR (1999) Elastic scattering and charge transfer in slow collisions: isotopes of H and H+ colliding with isotopes of H and with He. J Phys B: At Mol Opt Phys 32:3485–3509ADSCrossRefGoogle Scholar
  48. 48.
    Yevseyev AV, Radtsig AA, Smirnov BM (1982) The asymptotic theory of resonance charge exchange between diatomics. J Phys B: At Mol Phys 15:4437–4452ADSCrossRefGoogle Scholar
  49. 49.
    Huels MA, Champion RL, Doverspike LD, Wang YC (1990) Charge transfer and electron detachment for collisions of H- and D- with H. Phys Rev A 41:4809–4815ADSCrossRefGoogle Scholar
  50. 50.
    Copeland FBM, Crothers DSF (1997) Cross sections for resonant charge transfer between atoms and their positive ions atomic data. Nucl Data Tables 65:273–288ADSCrossRefGoogle Scholar
  51. 51.
    Roche AE, Goodyear CC (1971) Electron transfer in collisions of low-energy negative oxygen ions with O2. J Phys D Appl Phys 4:1513–1519ADSCrossRefGoogle Scholar
  52. 52.
    Rutherford JA, Vroom DA (1974) The reaction of atomic oxygen with several atmospheric ions. J Chem Phys 61:2514–2519ADSCrossRefGoogle Scholar
  53. 53.
    Rapp D, Francis WE (1962) Charge-exchange between gaseous ions and atoms. J Chem Phys 37:2631–2645ADSCrossRefGoogle Scholar
  54. 54.
    Brunger MJ, Buckman BSJ (2002) Electron-molecule scattering cross-sections. I. Experimental techniques and data for diatomic molecules. Phys Rep 357:215–458ADSCrossRefGoogle Scholar
  55. 55.
    England JP, Elford MT, Crompton RW (1988) A study of the vibrational excitation of H2 by measurements of the drift velocity of electrons in H2–Ne mixtures. J Phys 4:573–586Google Scholar
  56. 56.
    Muse J, Silva H, Lopes MCA, Khakoo MA (2008) Low energy elastic scattering of electrons from H2 and N2. J Phys B: At Mol Opt Phys 41:095203ADSCrossRefGoogle Scholar
  57. 57.
    Shyn TW, Sharp WE (1981) Angular distributions of electrons elastically scattered from H2. Phys Rev A 24:1734–1740ADSCrossRefGoogle Scholar
  58. 58.
    Itikawa Y (1974) Momentum-transfer cross sections for electron collisions with atoms and molecules. Atom Data Nucl Data Tables 14:1–10ADSCrossRefGoogle Scholar
  59. 59.
    Bray I, Konovalov DA, McCarthy IE (1991) Coupled-channel optical calculation of electron-hydrogen scattering: elastic scattering from 0.5 to 30 eV. Phys Rev A 43:5878–5885ADSCrossRefGoogle Scholar
  60. 60.
    Gupta GP, Mathur KC (1980) Differential cross sections for the elastic scattering of electrons by hydrogen atoms at intermediate energies. J Phys B 13:1719ADSCrossRefGoogle Scholar
  61. 61.
    Itikawa Y (2009) Cross sections for electron collisions with oxygen molecules. J Phys Chem Ref Data 38:1–20ADSCrossRefGoogle Scholar
  62. 62.
    Sullivan JP, Gibson JC, Gulley RG, Buckman SJ (1995) Low energy electron scattering from O2. J Phys B 28:4319–4328ADSCrossRefGoogle Scholar
  63. 63.
    Linert I, King GC, Zubek M (2004) Measurements of differential cross sections for elastic electron scattering in the backward direction by molecular oxygen. J Phys B 37:468–491CrossRefGoogle Scholar
  64. 64.
    Machado LE, Ribeiro EMS, Lee MT, Fujimoto MM, Brescansin LM (1999) Cross sections and polarization fractions for elastic e–O2 collisions. Phys Rev A 60:1199–1205ADSCrossRefGoogle Scholar
  65. 65.
    Tabata T, Shirai T, Sataka M, Kubo HA (2006) Analytic cross sections for electron impact collisions with nitrogen molecules. Atom Data Nucl Data Tables 92:375–406ADSCrossRefGoogle Scholar
  66. 66.
    Thomas LD, Nesbet RK (1975) Addendum: low energy electron scattering by atomic oxygen. Phys Rev A 12:1729–1730ADSCrossRefGoogle Scholar
  67. 67.
    Blaha M, Davis J (1975) Elastic scattering of electrons by oxygen and nitrogen at intermediate energies. Phys Rev A 12:2319–2324ADSCrossRefGoogle Scholar
  68. 68.
    Itikawa Y, Ichimura A (1990) Cross sections for collisions of electrons and photons with atomic oxygen. J Phys Chem Ref Data 19:637–651ADSCrossRefGoogle Scholar
  69. 69.
    Sobrinho AMC (2004) Elastic and absorption cross sections for electron–hydroxyl radical collisions. Phys Rev A 70:032717ADSCrossRefGoogle Scholar
  70. 70.
    Chen X, Morgan LA (1997) Low-energy electron scattering from the X 2Σ state of the OH molecule. J Phys B 30:3709–3717ADSCrossRefGoogle Scholar
  71. 71.
    Khakoo MA, Silva H, Muse J, Lopes MCA, Winstead C, McKoy V (2008) Electron scattering from H2O: elastic scattering. Phys Rev A 78:052710ADSCrossRefGoogle Scholar
  72. 72.
    Faure A, Gorfinkiel JD, Tennyson J (2004) Low-energy electron collisions with water: elastic and rotationally inelastic scattering. J Phys B: At Mol Opt Phys 37:801–807ADSCrossRefGoogle Scholar
  73. 73.
    Katase A, Ishibashi K, Matsumoto Y, Sakae T, Maezono S, Murakami E, Watanabe K, Maki H (1986) Elastic scattering of electrons by water molecules over the range 100–1000 eV. J Phys B: At Mol Phys 19:2715–2734ADSCrossRefGoogle Scholar
  74. 74.
    Itikawa Y (2005) Cross sections for electron collisions with water molecules. J Phys Chem Ref Data 34:1–22ADSCrossRefGoogle Scholar
  75. 75.
    Gibson JC, Green MA, Trantham KW, Buckman SJ, Teubner PJO, Brunger MJ (1998) Elastic electron scattering from CO2. J Phys B: At Mol Opt Phys 32:213–233ADSCrossRefGoogle Scholar
  76. 76.
    Iga I, Homem MGP, Mazon KT, Lee MT (1999) Elastic and total cross sections for electron–carbon dioxide collisions in the intermediate energy range. J Phys B: At Mol Opt Phys 32:4373–4388ADSCrossRefGoogle Scholar
  77. 77.
    Itikawa Y (2002) Cross sections for electron collisions with carbon dioxide. J Phys Chem Ref Data 31:749–767ADSCrossRefGoogle Scholar
  78. 78.
    Gibson JC, Morganz LA, Gulleyx RJ, Brungerk MJ, Bundschuy CT, Buckmany SJ (1996) Low energy electron scattering from CO: absolute cross section measurements and R-matrix calculations. J Phys B: At Mol Opt Phys 29:3197–3214ADSCrossRefGoogle Scholar
  79. 79.
    Allan M (2010) Electron collisions with CO: elastic and vibrational excitation cross sections. Phys Rev A 81:042706ADSCrossRefGoogle Scholar
  80. 80.
    Lee MT, Iga I, Brescansin LM, Machado LE, Machado FBC (2002) Theoretical studies on electron-carbon monoxide collisions in the low and intermediate energy range. J Mol Struct (Theochem) 585:181–187CrossRefGoogle Scholar
  81. 81.
    Land JE (1978) Electron scattering cross sections for momentum transfer and inelastic excitation in carbon monoxide. J App Phys 49:5716–5721ADSCrossRefGoogle Scholar
  82. 82.
    Lee MT, Iga I, Machado LE, Brescansin LM (2000) Model absorption potential for electron-molecule scattering in the intermediate-energy range. Phys Rev A 62:062710ADSCrossRefGoogle Scholar
  83. 83.
    Cho H, Park YS, Castro EAY, De Souza GLC, Iga I, Machado LE, Brescansin LM, Lee MT (2008) A comparative experimental–theoretical study on elastic electron scattering by methane. J Phys B: At Mol Opt Phys 41:045203ADSCrossRefGoogle Scholar
  84. 84.
    Bundschuy CT, Gibsony JC, Gulleyz RJ, Brungerx MJ, Buckmany SJ, Sannak N, Gianturco FA (1997) Low-energy electron scattering from methane. J Phys B: At Mol Opt Phys 30:2239–2259ADSCrossRefGoogle Scholar
  85. 85.
    Sohn W, Kochem KH, Scheuerlein KM, Jung K, Ehrhardt H (1986) Elastic electron scattering from CH4, for collision energies between 0.2 and 5 eV. J Phys B: At Mol Phys 19:3625–3632ADSCrossRefGoogle Scholar
  86. 86.
    Nakamura Y (2010) Electron swarm parameters in pure C2H2 and in C2H2–Ar mixtures and electron collision cross sections for the C2H2 molecule. J Phys D Appl Phys 43:365201CrossRefGoogle Scholar
  87. 87.
    Khakoot MA, Jayawee T, Wangs S, Trajmarg S (1999) Differential electron scattering from acetylene-elastic scattering and vibrational excitation. J Phys B: At Mol Opt Phys 26:4845–4860ADSCrossRefGoogle Scholar
  88. 88.
    Kochem KH, Sohn W, Jung K, Ehrhardt H, Changt ES (1985) Direct and resonant vibrational excitation of C2H2 by electron impact from 0 to 3.6 eV. J Phys B: At Mol Opt Phys 18:1253–1266ADSCrossRefGoogle Scholar
  89. 89.
    Iga I, Lee MT, Rawat P, Brescansin LM, Machado LE (2004) Elastic and total cross-sections for electron scattering by acetylene in the intermediate energy range. Eur Phys J D 31:45–51ADSCrossRefGoogle Scholar
  90. 90.
    Lee MT, Machado LE, Brescansin LM, Iga I (2005) A theoretical study on elastic electron–CHx (x = 1, 2, 3, 4) collisions in the low-energy range. J Phys B: At Mol Opt Phys 38:3795–3804ADSCrossRefGoogle Scholar
  91. 91.
    Castroa EAY, Souzab GLC, Brescansind LM, Machadoc LE, Dos Santosc AS, Lee MT (2010) Application of the scaled quasi-free scattering model absorption potential to electron scattering by CHx (x = 1, 2, 3,4). J Electron Spectros Relat Phenom 182:4–10CrossRefGoogle Scholar
  92. 92.
    Michelin SE, Oliveira HL, Kroin T, Soares LSS, Veiteinheimer E, Luz CAR, Lima MF, Fujimoto MM, Lee MT (2005) A comparative study for elastic electron collisions on the isoelectronic CNN, NCN, and CCO radicals. J Chem Phys 122:094309ADSCrossRefGoogle Scholar
  93. 93.
    Andr′e P, Brunet L, Bussi`ere W, Caillard J, Lombard JM, Picard JP (2004) Transport coefficients of plasmas consisting of insulator vapours. Eur Phys J Appl Phys 25:169–182ADSCrossRefGoogle Scholar
  94. 94.
    Fujimoto MM, Lee MT, Michelin SE (2004) Elastic cross sections for electron-ketenylidene (C2O) collisions. Phys Rev A 69:052706ADSCrossRefGoogle Scholar
  95. 95.
    Spencer FE, Phelps AV (1976) Momentum transfer cross sections and conductivity integrals for gases of MHD interest. In: Proceedings of 15th symposium engineering aspects of MHD, University of Pennsylvania, Philadelphia, PA, p IX.9.1Google Scholar
  96. 96.
    Kovitya P (1984) Thermodynamic and transport properties of ablated vapours of PTFE, alumina, perspex and PVC in the temperature range 5000–30000 K. IEEE Trans Plasma Sci 12:38–42ADSCrossRefGoogle Scholar
  97. 97.
    Mason EA, Munn RJ (1967) Transport coefficients of ionized gases. Phys Fluids 10:1827–1832ADSCrossRefGoogle Scholar
  98. 98.
    Devoto RS (1973) Transport properties of ionized gas. Phys Fluids 16:616–623ADSCrossRefGoogle Scholar
  99. 99.
    Murphy AB (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. Plasma Chem Plasma Process 20:279–297CrossRefGoogle Scholar
  100. 100.
    Wright MJ, Hwang HH, Schwenke DW (2007) Recommended collision integrals for transport property computations part 2: Mars and Venus entries. AIAA J 45:281–288ADSCrossRefGoogle Scholar
  101. 101.
    Krěnek P (2008) Thermophysical Properties of H2O–Ar Plasmas at Temperatures 400–50,000 K and Pressure 0.1 MPa. Plasma Chem Plasma Process 28:107–122CrossRefGoogle Scholar
  102. 102.
    Magin T, Sdegrze G, Sokolova I (2002) Thermodynamic and transport properties of Martian atmosphere for space entry application 33rd plasmadynamics and lasers conference. Hawaii, 20–23 May 2002Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Electrical Insulation and Power EquipmentXi’an Jiaotong UniversityXi’an ShaanxiPeople’s Republic of China
  2. 2.Department of Electrical Engineering and ElectronicsThe University of LiverpoolLiverpoolUK
  3. 3.CSIRO Materials Science and EngineeringLindfieldAustralia

Personalised recommendations