Plasma Chemistry and Plasma Processing

, Volume 32, Issue 3, pp 519–531 | Cite as

Thermal Plasma Synthesis of Superparamagnetic Iron Oxide Nanoparticles

  • Pingyan Lei
  • Adam M. Boies
  • Steven Calder
  • Steven L. Girshick
Original Paper

Abstract

Superparamagnetic iron oxide nanoparticles were synthesized by injecting ferrocene vapor and oxygen into an argon/helium DC thermal plasma. Size distributions of particles in the reactor exhaust were measured online using an aerosol extraction probe interfaced to a scanning mobility particle sizer, and particles were collected on transmission electron microscopy (TEM) grids and glass fiber filters for off-line characterization. The morphology, chemical and phase composition of the nanoparticles were characterized using TEM and X-ray diffraction, and the magnetic properties of the particles were analyzed with a vibrating sample magnetometer and a magnetic property measurement system. Aerosol at the reactor exhaust consisted of both single nanocrystals and small agglomerates, with a modal mobility diameter of 8–9 nm. Powder synthesized with optimum oxygen flow rate consisted primarily of magnetite (Fe3O4), and had a room-temperature saturation magnetization of 40.15 emu/g, with a coercivity and remanence of 26 Oe and 1.5 emu/g, respectively.

Keywords

Iron oxide Nanoparticles DC thermal plasma Magnetic properties 

Notes

Acknowledgments

This research was primarily supported by the U.S. National Science Foundation under Award Numbers CBET-0730184 and CBET-1066343, and by the Minnesota Futures Grant Program. Parts of the characterization work were conducted at the College of Science and Engineering Characterization Facility and the Institute for Rock Magnetism at the University of Minnesota.

References

  1. 1.
    Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Int Mater Rev 49:125–170CrossRefGoogle Scholar
  2. 2.
    Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  3. 3.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D 36:R167–R181ADSCrossRefGoogle Scholar
  4. 4.
    Gupta AK, Gupta M (2005) Biomater 26:3995–4021CrossRefGoogle Scholar
  5. 5.
    Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Chem Rev 108:2064–2110CrossRefGoogle Scholar
  6. 6.
    Gao J, Gu H, Xu B (2009) Acct Chem Res 42:1097–1107CrossRefGoogle Scholar
  7. 7.
    Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Adv Mater 22:2729–2742CrossRefGoogle Scholar
  8. 8.
    Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  9. 9.
    Ward J, Naik KS, Guthrie JA, Wilson D, Robinson PJ (1999) Radiol 210:459–466Google Scholar
  10. 10.
    Kumano S, Murakami T, Kim T, Hori M, Okada A, Sugiura T, Noguchi Y, Kawata S, Tomoda K, Nakamura H (2003) Am J Roentgen 181:1335–1339Google Scholar
  11. 11.
    Rabias I, Tsitrouli D, Karakosta E, Kehagias T, Diamantopoulos G, Fardis M, Stamopoulos D, Maris TG, Falaras P, Zouridakis N, Diamantis N, Panayotou G, Verganelakis DA, Drossopoulou GI, Tsilibari EC, Papavassiliou G (2010) Biomicrofluid 4:024111CrossRefGoogle Scholar
  12. 12.
    Jeong JR, Lee SJ, Kim JD, Shin SC (2004) Physica Stat Solid B 241:1593–1596ADSCrossRefGoogle Scholar
  13. 13.
    Goya GF, Morales MP (2004) J Meta Nanocryst Mater 20–21:673–678CrossRefGoogle Scholar
  14. 14.
    Smolensky ED, Park HYE, Berquo TS, Pierre VC (2010) Contrast Media Mol Imaging 6:189–199Google Scholar
  15. 15.
    Teleki A, Suter M, Kidambi PR, Ergeneman O, Krumeich F, Nelson BJ, Pratsinis SE (2009) Chem Mater 21:2094–2100CrossRefGoogle Scholar
  16. 16.
    Boies AM, Roberts JT, Girshick SL, Zhang B, Nakamura T, Mochizuki A (2009) Nanotechnol 20:295604CrossRefGoogle Scholar
  17. 17.
    Calder S, Boies A, Lei P, Girshick S, Roberts J (2011) Chem Mater 23:2917–2921CrossRefGoogle Scholar
  18. 18.
    Yoshida T, Akashi K (1981) Trans Jpn Inst Met 22:371–378Google Scholar
  19. 19.
    Girshick SL, Chiu C-P, Muno R, Wu CY, Yang L, Singh SK, McMurry PH (1993) J Aerosol Sci 24:367–382CrossRefGoogle Scholar
  20. 20.
    Chou CH, Phillips J (1992) J Mater Res 7:2107–2113ADSCrossRefGoogle Scholar
  21. 21.
    Vollath D, Szabo DV, Taylor RD, Willis JO, Sickafus KE (1995) Nanostruct Mater 6:941–944CrossRefGoogle Scholar
  22. 22.
    Vollath D, Szabo DV, Taylor RD, Willis JO (1997) J Mater Res 12:2175–2182ADSCrossRefGoogle Scholar
  23. 23.
    Kalyanaraman R, Yoo S, Krupashankara MS, Sudarshan TS, Dowding RJ (1998) Nanostruct Mater 10:1379–1392CrossRefGoogle Scholar
  24. 24.
    Janzen C, Wiggers H, Knipping J, Roth P (2001) J Nanosci Nanotechnol 1:221–225CrossRefGoogle Scholar
  25. 25.
    Li SZ, Hong YC, Uhm HS, Li ZK (2004) Jpn J Appl Phys 43:7714–7717ADSCrossRefGoogle Scholar
  26. 26.
    Zajickova L, Synek P, Jasek O, Elias M, David B, Bursik J, Pizurova N, Hanzlikova R, Lazar L (2009) Appl Surf Sci 255:5421–5424ADSCrossRefGoogle Scholar
  27. 27.
    David B, Pizurova N, Schneeweiss O, Kudrle V, Jasek O, Synek P (2011) Jpn J Appl Phys 50:08JF11CrossRefGoogle Scholar
  28. 28.
    Synek P, Jasek O, Zajickova L, David B, Kudrle V, Pizurova N (2011) Mater Lett 65:982–984CrossRefGoogle Scholar
  29. 29.
    Bica I (1999) Mater Sci Engg B 68:5–9CrossRefGoogle Scholar
  30. 30.
    Balasubramaniam C, Khollam YB, Banerjee I, Bakare PP, Date SK, Das AK, Bhoraskar SV (2004) Mater Lett 58:3958–3962CrossRefGoogle Scholar
  31. 31.
    Banerjee I, Khollam YB, Balasubramanian C, Pasricha R, Bakare PP, Patil KR, Das AK, Bhoraskar SV (2006) Script Mater 54:1235–1240CrossRefGoogle Scholar
  32. 32.
    Chazelas C, Coudert JF, Jarrige J, Fauchais P (2006) J Eur Ceram Soc 26:3499–3507CrossRefGoogle Scholar
  33. 33.
    Banerjee I, Khollam YB, Mahapatra SK, Das AK, Bhoraskar SV (2010) J Vac Sci Technol A 28:1399–1403CrossRefGoogle Scholar
  34. 34.
    Subramanian V, Baskaran R, Krishnan H (2009) Aerosol Air Qual Res 9:172–186Google Scholar
  35. 35.
    McIlroy DN, Zhang D, Norton MG, O’Brien WL, Schwickert MM, Harp GR (2000) J Appl Phys 87:7213–7217ADSCrossRefGoogle Scholar
  36. 36.
    McIlroy DN, Huso J, Kranov Y, Marchinek J, Ebert C, Moore S, Marji E, Gandy R, Hong YK, Norton MG, Cavalieri E, Benz R, Justus BL, Rosenberg A (2003) J Appl Phys 93:5643–5649ADSCrossRefGoogle Scholar
  37. 37.
    Kouprine A, Gitzhofer F, Boulos M, Veres T (2006) Carbon 44:2593–2601CrossRefGoogle Scholar
  38. 38.
    Panchal V, Neergat M, Bhandarkar U (2011) J Nanopart Res 13:3825–3833CrossRefGoogle Scholar
  39. 39.
    Panchal V, Lahoti G, Bhandarkar U, Neergat M (2011) J Phys D 44:345205CrossRefGoogle Scholar
  40. 40.
    Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge, New YorkCrossRefGoogle Scholar
  41. 41.
    Powell QH, Fotou GP, Kodas TT, Anderson BM (1997) Chem Mater 9:685–693CrossRefGoogle Scholar
  42. 42.
    Zhang B (2007) Thermal plasma synthesis and photoinduced coating of aluminum nanoparticles. PhD thesis, Univ Minnesota, MinneapolisGoogle Scholar
  43. 43.
    Monte MJS, Santos LMNBF, Fulem M, Fonseca JMS, Sousa CAD (2006) J Chem Eng Data 51:757–766CrossRefGoogle Scholar
  44. 44.
    Jain R, Girshick SL, Heberlein JV, Mukherjee R, Zhang B, Nakamura T, Mochizuki A (2010) Plasma Chem Plasma Process 30:795–811CrossRefGoogle Scholar
  45. 45.
    Wang X, Hafiz J, Mukherjee R, Renault T, Heberlein J, Girshick SL, McMurry PH (2005) Plasma Chem Plasma Process 25:439–453CrossRefGoogle Scholar
  46. 46.
    Friedlander SK, Wang CS (1966) J Coll Interface Sci 22:126–132CrossRefGoogle Scholar
  47. 47.
    Benitez MJ, Mishra D, Szary P, Confalonieri GAB, Feyen M, Lu AH, Agudo L, Eggeler G, Petracic O, Zabel H (2011) J Phys Condens Matter 23:126003ADSCrossRefGoogle Scholar
  48. 48.
    Danan H, Herr A, Meyer AJP (1968) J Appl Phys 39:669–670ADSCrossRefGoogle Scholar
  49. 49.
    Berkowitz AE, Schuele WJ, Flanders PJ (1968) J Appl Phys 39:1261–1263ADSCrossRefGoogle Scholar
  50. 50.
    Coey JMD (1971) Appl Phys Lett 27:1140–1142CrossRefGoogle Scholar
  51. 51.
    Frenkel J, Doefman J (1930) Nature 126:274–275ADSMATHCrossRefGoogle Scholar
  52. 52.
    Li D, Teoh WY, Selomulya C, Woodward RC, Munroe P, Amal R (2007) J Mater Chem 17:4876–4884CrossRefGoogle Scholar
  53. 53.
    Smolensky ED, Neary MC, Zhou Y, Berquo TS, Pierre VC (2011) Chem Commun 47:2149–2151CrossRefGoogle Scholar
  54. 54.
    Rao N, Girshick S, Heberlein J, McMurry P, Bench M, Jones S, Hansen D, Micheel B (1995) Plasma Chem Plasma Process 15:581–607CrossRefGoogle Scholar
  55. 55.
    Zachariah MR, Aquino MI, Shull RD, Steel EB (1995) Nanostruct Mater 5:383–392CrossRefGoogle Scholar
  56. 56.
    Janzen C, Knipping J, Rellinghaus B, Roth P (2003) J Nanopart Res 5:589–596CrossRefGoogle Scholar
  57. 57.
    Li D, Teoh WY, Woodward RC, Cashion JD, Selomulya C, Amal R (2009) J Phys Chem C 113:12040–12047CrossRefGoogle Scholar
  58. 58.
    Strobel R, Pratsinis SE (2009) Adv Powder Technol 20:190–194CrossRefGoogle Scholar
  59. 59.
    Guo B, Yim H, Khasanov A, Stevens J (2010) Aerosol Sci Technol 44:281–291CrossRefGoogle Scholar
  60. 60.
    Kumfer BM, Shinoda K, Jeyadevan B, Kennedy IM (2010) J Aerosol Sci 41:257–265CrossRefGoogle Scholar
  61. 61.
    Dunlop DJ (2007) J Geophys Res Solid Earth 112:B11103ADSCrossRefGoogle Scholar
  62. 62.
    Verwey EJW (1939) Nature 144:327–328ADSCrossRefGoogle Scholar
  63. 63.
    Ozdemir O, Dunlop DJ (2010) J Geophys Res-Solid Earth 115:B02101CrossRefGoogle Scholar
  64. 64.
    Maity D, Choo S-G, Yi J, Ding J, Xue JM (2009) J Magn Magn Mater 321:1256–1259ADSCrossRefGoogle Scholar
  65. 65.
    Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. IEEE/Wiley, HobokenGoogle Scholar
  66. 66.
    Guardia P, Batlle-Brugal B, Roca AG, Iglesias O, Morales MP, Serna CJ, Labarta A, Batlle X (2007) J Magn Magn Mater 316:E756–E759ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Pingyan Lei
    • 1
  • Adam M. Boies
    • 1
    • 2
  • Steven Calder
    • 1
    • 3
  • Steven L. Girshick
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK
  3. 3.Laboratory of Organic ChemistryWageningen UniversityWageningenThe Netherlands

Personalised recommendations