Plasma Chemistry and Plasma Processing

, Volume 32, Issue 1, pp 153–163 | Cite as

Characteristics of the Decomposition of CO2 in a Dielectric Packed-Bed Plasma Reactor

  • Qinqin Yu
  • Meng Kong
  • Tong Liu
  • Jinhua Fei
  • Xiaoming Zheng
Original Paper

Abstract

The decomposition of CO2 in a dielectric packed-bed plasma reactor has been studied. It was found that the dielectric properties and morphology of packing dielectric pellets play important roles in the reaction due to their influence on the electron energy distribution in the plasma. The acid–base properties of the packing materials also affect the reaction through the chemisorption of CO2 on basic sites of the materials. Heterogeneous reactions on the solid surfaces of the dielectric materials also play a role in the reaction, which was also confirmed through the investigation of the influence of the discharge length on the reaction. The reverse reaction of CO2 decomposition, the oxidation of CO, was also investigated to further understand the role of dielectric materials in the plasma and their effect on plasma reactions. Both the decomposition of CO2 and the oxidation of CO in non-packed or dielectric packed reactors are first-ordered.

Keywords

Packed-bed plasma reactor CO2 Non-thermal plasma Dielectric materials 

References

  1. 1.
    Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Nature 352:225–226ADSCrossRefGoogle Scholar
  2. 2.
    Fei JH, Hou ZY, Zheng XM, Yashima T (2004) Catal Lett 98:241–246CrossRefGoogle Scholar
  3. 3.
    Hou ZY, Gao J, Guo JZ, Liang D, Lou H, Zheng XM (2007) J Catal 250:331–341CrossRefGoogle Scholar
  4. 4.
    Li Y, Wang XX, Xie C, Song CS (2009) App Catal A: General 357:213–222CrossRefGoogle Scholar
  5. 5.
    Solymosi F, Tolmacsov P, Kedves K (2003) J Catal 216:377–385CrossRefGoogle Scholar
  6. 6.
    Van Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H (2007) Appl Catal B: Environ 74:161–169CrossRefGoogle Scholar
  7. 7.
    Li X, Shi C, Xu Y, Wang K, Zhu A (2007) Green Chem 9:647–653CrossRefGoogle Scholar
  8. 8.
    Miessner H, Rudolph R, Francke K-P (1998) Chem Comm 34:2725–2726CrossRefGoogle Scholar
  9. 9.
    Ghorbanzadeh AM, Lotfalipour R, Rezaei S (2009) Int J Hydrogen Energy 34:293–298CrossRefGoogle Scholar
  10. 10.
    Li M, Xu G, Tian Y, Chen L, Fu H (2004) J Phys Chem A 108:1687–1693CrossRefGoogle Scholar
  11. 11.
    Bo Z, Yan J, Li X, Chi Y, Cen K (2008) Int J Hydrogen Energy 33:5545–5553CrossRefGoogle Scholar
  12. 12.
    Kraus M, Eliasson B, Kogelschataz U, Wokaun A (2001) Phys Chem Chem Phys 3:294–300CrossRefGoogle Scholar
  13. 13.
    Yu Q, Kong M, Liu T, Fei J, Zheng X (2011) Catal Comm 12:1318–1322CrossRefGoogle Scholar
  14. 14.
    Goujard V, Tatibouet J, Batiot-Dupeyrat C (2009) Appl Catal A: General 353:228–235CrossRefGoogle Scholar
  15. 15.
    Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Appl Catal B: Environ 85:1–9CrossRefGoogle Scholar
  16. 16.
    Brock SL, Marquez M, Suib SL, Hayashi Y, Matsumoto H (1998) J Catal 180:225–233CrossRefGoogle Scholar
  17. 17.
    Wang JY, Xia GG, Huang A, Suib SL, Hayashi Y, Matsumoto H (1999) J Catal 185:152–159CrossRefGoogle Scholar
  18. 18.
    Brock SL, Shimojo T, Marquez M, Marun C, Suib SL, Matsumoto H, Hayashi Y (1999) J Catal 184:123–133CrossRefGoogle Scholar
  19. 19.
    Li R, Yamaguchi Y, Yin S, Yang Q, Sato T (2004) Solid State Ionics 172:235–238CrossRefGoogle Scholar
  20. 20.
    Li R, Tang Q, Yin S, Sato T (2006) Fuel Process Technol 87:617–622CrossRefGoogle Scholar
  21. 21.
    Li R, Tang Q, Yin S, Sato T (2007) Appl Phys Lett 90:131502ADSCrossRefGoogle Scholar
  22. 22.
    Li R, Tang Q, Yin S, Sato T (2006) Plasma Chem Plasma Proc 26:235–238CrossRefGoogle Scholar
  23. 23.
    Indarto A, Yang DR, Choi JW, Lee H, Song HK (2007) J Hazard Mater 146:309–315CrossRefGoogle Scholar
  24. 24.
    Horvath G, Skalny JD, Mason NJ (2008) J Phys D Appl Phys 41:225207ADSCrossRefGoogle Scholar
  25. 25.
    Mori S, Yamamoto A, Suzuki M (2006) Plasma Sources Sci Technol 15:609–613ADSCrossRefGoogle Scholar
  26. 26.
    David RL (1999–2000) CRC Handbook of chemistry and physics. CRC Press, New YorkGoogle Scholar
  27. 27.
    Corvin KK, Corrigan SJB (1969) J Chem Phys 50:2570–2574ADSCrossRefGoogle Scholar
  28. 28.
    Locht R, Davister M (1995) Int J Mass Spectro Ion Proc 144:105–129ADSCrossRefGoogle Scholar
  29. 29.
    Cenian A, Chernukho A, Borodin V (1995) Contrib Plasma Phys 35:273–296ADSCrossRefGoogle Scholar
  30. 30.
    Chen HL, Lee HM, Chen SH, Chang MB (2008) Ind Eng Chem Res 47:2122–2130CrossRefGoogle Scholar
  31. 31.
    Takaki K, Urashima K, Jen-Shih C (2004) IEEE Trans Plasma Sci 32:2175–2183ADSCrossRefGoogle Scholar
  32. 32.
    Ye Q, Zhang T, Lu F, Li J, He Z, Lin F (2008) J Phys D Appl Phys 41:252–257Google Scholar
  33. 33.
    Heintze M, Pietruszka B (2004) Catal Today 89:21–25CrossRefGoogle Scholar
  34. 34.
    Yamamoto A, Mori S, Suzuki M (2007) Thin Solid Films 515:4296ADSCrossRefGoogle Scholar
  35. 35.
    Cartry G, Magne L, Cernogora G (2000) J Phys D Appl Phys 33:1303–1304ADSCrossRefGoogle Scholar
  36. 36.
    Falkenstein Z (1999) J Appl Phys 85:525–529ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Qinqin Yu
    • 1
  • Meng Kong
    • 1
  • Tong Liu
    • 1
  • Jinhua Fei
    • 1
  • Xiaoming Zheng
    • 1
  1. 1.Department of Chemistry, Institute of CatalysisZhejiang UniversityHangzhouChina

Personalised recommendations