Plasma Chemistry and Plasma Processing

, Volume 32, Issue 1, pp 75–96

Thermophysical Properties of High-Temperature Reacting Mixtures of Carbon and Water in the Range 400–30,000 K and 0.1–10 atm. Part 1: Equilibrium Composition and Thermodynamic Properties

Original Paper


This paper is devoted to the calculation of the chemical equilibrium composition and thermodynamic properties of reacting mixtures of carbon and water at high temperature. Equilibrium particle concentrations and thermodynamic properties including mass density, molar weight, entropy, enthalpy and specific heat at constant pressure, sonic velocity, and heat capacity ratio are determined by the method of Gibbs free energy minimization, using species data from standard thermodynamic tables. The calculations, which assume local thermodynamic equilibrium, are performed in the temperature range from 400 to 30,000 K for pressures of 0.10, 1.0, 3.0, 5.0 and 10.0 atm. The properties of the reacting mixture are affected by the possible occurrence of solid carbon formation at low temperature, and therefore attention is paid to the influence of the carbon phase transition by comparing the results obtained with and without considering solid carbon formation. The results presented here clarify some basic chemical process and are reliable reference data for use in the simulation of plasmas in reacting carbon and water mixtures together with the need of transport coefficients computation.


Carbon Water Thermal plasmas Equilibrium composition Thermodynamic properties Phase transition 


  1. 1.
    Belluci S (2005) Carbon nanotubes: physics and applications. Phys Status Solidi C 2:34–47ADSCrossRefGoogle Scholar
  2. 2.
    Hsin YL, Hwang KC, Chen FR, Kai JJ (2001) Production and in situ metal filling of carbon nanotubes in water. Adv Mater 13:830–833CrossRefGoogle Scholar
  3. 3.
    Sano N, Wang H, Alexandrou I, Chhowalla M, Teo KB, Amaratunga GAJ (2002) Properties of carbon onions produced by an arc discharge in water. J Appl Phys 92:2783–2788ADSCrossRefGoogle Scholar
  4. 4.
    Lange H, Sioda M, Huczko A, Zhu YQ, Kroto HW, Walton DRM (2003) Nanocarbon production by arc discharge in water. Carbon 41:1617–1623CrossRefGoogle Scholar
  5. 5.
    Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga GAJ (2001) Synthesis of carbon ‘onions’ in water. Nature 414:506–507ADSCrossRefGoogle Scholar
  6. 6.
    Antisari MV, Marazzi R, Krsmanovic R (2003) Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41:2393–2401CrossRefGoogle Scholar
  7. 7.
    Zhu HW, Li XS, Jiang B, Xu CL, Zhu YF, Wu DH, Chen XH (2002) Formation of carbon nanotubes in water by the electric-arc technique. Chem Phys Lett 366:664–669ADSCrossRefGoogle Scholar
  8. 8.
    Sano N, Kawanami O, Charinpanitkul T, Tanthapanichakoonc W (2008) Study on reaction field in arc-in-water to produce carbon nano-materials. Thin Solid Films 516:6694–6698ADSCrossRefGoogle Scholar
  9. 9.
    Charles S, Korman S (1973) Synthesis of hydrocarbons by the high intensity arc. Prepr Pap Am Chem Soc Div Fuel Chem 18:71–100Google Scholar
  10. 10.
    Richardson WH Jr (1998) Electric arc material processing system. US Patent 5,792,325Google Scholar
  11. 11.
    Richardson WH Jr (2001) Fuel gas production by underwater arcing. US Patent 6,299,738Google Scholar
  12. 12.
    Tremblay D, Kaliaguinel S (1972) Reaction of water vapour with carbon vapour in a high-intensity arc. Ind Eng Chem Process Des Dev 3:265–271CrossRefGoogle Scholar
  13. 13.
    Wang WZ, Rong MZ, Murphy AB, Wu Y, Spencer JW, Yan JD, Fang MTC (2011) Thermophysical properties of carbon–argon and carbon–helium plasmas. J Phys D Appl Phys. AcceptedGoogle Scholar
  14. 14.
    Coufal O (2007) Composition and thermodynamic properties of thermal plasma up to 50 Kk. J Phys D Appl Phys 40:3371–3385ADSCrossRefGoogle Scholar
  15. 15.
    Flanagan G (1986) Reactions of atomic carbon with water M. S. Thesis Auburn University, USAGoogle Scholar
  16. 16.
    Ahmed SN, McKee ML, Shevlin PB (1983) An experimental and ab initio study of the addition of atomic carbon to water. J Am Chem Soc 105:3942–3947CrossRefGoogle Scholar
  17. 17.
    André P, Aubreton J, Clain S (2010) Transport coefficients in thermal plasma. Applications to Mars and Titan atmospheres. Eur Phys J D 57:227–234ADSCrossRefGoogle Scholar
  18. 18.
    Dorofeeva OV, Gurvich LV (1992) Thermodynamic properties of linear carbon chain molecules with conjugated triple bonds part 2 free radicals CnH (n = 2–12) and CnN (n = 2–11). Thermochim Acta 197:53–68CrossRefGoogle Scholar
  19. 19.
    Huang JW, Graham WRM (1990) Fourier transform infrared study of tricarbon hydride radicals trapped in Ar at 10 K. J Chem Phys 93:1583–1596ADSCrossRefGoogle Scholar
  20. 20.
    Shen LN, Doyle TJ, Graham WRM (1990) Fourier transform spectroscopy of C4H (butadiynyl) in Ar at 10 K: C–H and C≡C stretching modes. J Chem Phys 93:1597–1603ADSCrossRefGoogle Scholar
  21. 21.
    McBride BJ, Gordon S (1992) Computer program for calculating and fitting thermodynamic functions. NASA RP-1271Google Scholar
  22. 22.
    Gordon S, McBride BJ (1999) Thermodynamic data to 20,000 K for monatomic gases. NASA TP 1999-208523Google Scholar
  23. 23.
    Moore CE (1949) Atomic energy levels circular 467, vol 1. US National Bureau of Standards, Washington, DCGoogle Scholar
  24. 24.
    Moore CE (1952) Atomic energy levels circular 467, vol 2. US National Bureau of Standards, Washington, DCGoogle Scholar
  25. 25.
    Chase MW, Davies CA Jr (1998) NIST-JANAF thermochemical tables, 4th edn. American Institute of Physics for the National Institute of Standards and Technology, New YorkGoogle Scholar
  26. 26.
    Křenek P (2008) Thermophysical properties of H2O–Ar plasmas at temperatures 400–50,000 K and pressure 0.1 MPa. Plasma Chem Plasma Process 28:107–122CrossRefGoogle Scholar
  27. 27.
    Gordon S, McBride BJ (1971) Computer program for calculation of complex chemical equilibrium composition, rocket performance, incident and reflected shocks, and chapman jouguet detonations. NASA publication SP-273Google Scholar
  28. 28.
    Murphy AB (2001) Thermal plasmas in gas mixtures. J Phys D Appl Phys 34:151–173ADSCrossRefGoogle Scholar
  29. 29.
    Rochette D, Bussière W, André P (2004) Composition, enthalpy, and vaporization temperature calculation of Ag–SiO2 plasmas with air in the temperature range from 1,000 to 6,000 K and for pressure included between 1 and 50 bars. Plasma Chem Plasma Process 24:475–492CrossRefGoogle Scholar
  30. 30.
    Coufal O, Živný O (2011) Composition and thermodynamic properties of thermal plasma with condensed phases. Eur Phys J D 61:131–151ADSCrossRefGoogle Scholar
  31. 31.
    Fauchais P, Boulos MI, Pfender E (1994) Thermal plasmas-fundamentals and applications, vol 1. New York, PlenumGoogle Scholar
  32. 32.
    Kovitya P (1985) Physical properties of high-pressure plasmas of hydrogen and copper in the temperature range 5,000 K to 30,000K. IEEE Trans Plasma Sci 13:587–594ADSCrossRefGoogle Scholar
  33. 33.
    D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur Phys J D 46:129–150ADSCrossRefGoogle Scholar
  34. 34.
    Živný O (2009) Composition and thermodynamic functions of non-ideal plasma. Eur Phys J D 54:349–367ADSCrossRefGoogle Scholar
  35. 35.
    Atkins PW, de Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Electrical Insulation and Power EquipmentXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Department of Electrical Engineering and ElectronicsThe University of LiverpoolLiverpoolUK
  3. 3.CSIRO Materials Science and EngineeringLindfieldAustralia

Personalised recommendations