Qualitative By-Product Identification of Plasma-Assisted TCE Abatement by Mass Spectrometry and Fourier-Transform Infrared Spectroscopy

  • Arne M. Vandenbroucke
  • Minh Tuan Nguyen Dinh
  • Jean-Marc Giraudon
  • Rino Morent
  • Nathalie De Geyter
  • Jean-Francois Lamonier
  • Christophe Leys
Original Paper

Abstract

In this study, the formation of by-products resulting from the decomposition of trichloroethylene with a negative DC glow discharge has been investigated. By combining the qualitative data from mass spectrometry and Fourier-transform infrared spectroscopy, the formation of phosgene, dichloroacetylchloride and trichloroacetaldehyde have been confirmed as incomplete oxidation products. Hydrogen chloride, chlorine, carbon monoxide and carbon dioxide were also detected. Also, formation of ozone was found in the outlet stream. Based on this information, it is possible to chose an appropriate catalyst to combine with non thermal plasma. In this way emission of harmful, incomplete oxidation products can be further reduced at a lower energy cost.

Keywords

Non-thermal plasma VOC Negative DC glow discharge By-products FT-IR MS 

References

  1. 1.
    Atkinson R (2000) Atmos Environ 34(12–14):2063CrossRefGoogle Scholar
  2. 2.
    Yi FY, Lin XD, Chen SX, Wei XQ (2009) J Porous Mater 16(5):521CrossRefGoogle Scholar
  3. 3.
    Kennes C, Rene ER, Veiga MC (2009) J Chem Technol Biotechnol 84(10):1419CrossRefGoogle Scholar
  4. 4.
    Mudliar S, Giri B, Padoley K, Satpute D, Dixit R, Bhatt P, Pandey R, Juwarkar A, Vaidya A (2010) J Environ Manage 91(5):1039CrossRefGoogle Scholar
  5. 5.
    Everaert K, Baeyens J (2004) J Hazard Mater 109(1–3):113CrossRefGoogle Scholar
  6. 6.
    Tidahy HL, Siffert S, Lamonier JF, Zhilinskaya EA, Aboukais A, Yuan ZY, Vantomme A, Su BL, Canet X, De Weireld G, Frere M, N’Guyen TB, Giraudon JM, Leclercq G (2006) Appl Catal 310:61CrossRefGoogle Scholar
  7. 7.
    Li WB, Gong H (2010) Acta Phys Chim Sin 26(4):885MATHGoogle Scholar
  8. 8.
    Reij MW, Keurentjes JTF, Hartmans S (1998) J Biotechnol 59(3):155CrossRefGoogle Scholar
  9. 9.
    Degreve J, Everaert K, Baeyens J (2001) Filtr Sep 38(4):49CrossRefGoogle Scholar
  10. 10.
    Kumar A, Dewulf J, Van Langenhove H (2008) Chem Eng J 136(2–3):82CrossRefGoogle Scholar
  11. 11.
    Khan FI, Ghoshal AK (2000) J Loss Prev Process Ind 13(6):527CrossRefGoogle Scholar
  12. 12.
    Hackam R, Akiyama H (2000) IEEE Trans on Dielectr Electr Insul 7(5):654CrossRefGoogle Scholar
  13. 13.
    Kim HH (2004) Plasma Processes Polym 1(2):91CrossRefGoogle Scholar
  14. 14.
    Fridman A, Chirokov A, Gutsol A (2005) J Phys D-Appl Phys 38(2):R1ADSCrossRefGoogle Scholar
  15. 15.
    Borra JP, Goldman A, Goldman M, Boulaud D (1998) J Aerosol Sci 29(5–6):661CrossRefGoogle Scholar
  16. 16.
    Kim HH, Kobara H, Ogata A, Futamura S (2005) IEEE Trans Ind Appl 41(1):206CrossRefGoogle Scholar
  17. 17.
    Magureanu M, Mandache NB, Parvulescu VI, Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Appl Catal B—Environ 74(3–4):270CrossRefGoogle Scholar
  18. 18.
    Van Durme J, Dewulf J, Sysmans S, Leys C, Van Langenhove H (2007) Chemosphere 68(10):1821CrossRefGoogle Scholar
  19. 19.
    Byeon JH, Park JH, Jo YS, Yoon KY, Hwang J (2010) J Hazard Mater 175(1–3):417CrossRefGoogle Scholar
  20. 20.
    Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78(3–4):324CrossRefGoogle Scholar
  21. 21.
    Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43(7):2216CrossRefGoogle Scholar
  22. 22.
    Vertriest R, Morent R, Dewulf J, Leys C, Van Langenhove H (2003) Plasma Sources Sci Technol 12(3):412ADSCrossRefGoogle Scholar
  23. 23.
    Morent R, Leys C (2005) Ozone Sci Eng 27(3):239CrossRefGoogle Scholar
  24. 24.
    Akishev YS, Deryugin AA, Kochetov IV, Napartovich AP, Trushkin NI (1993) J Phys D Appl Phys 26(10):1630ADSCrossRefGoogle Scholar
  25. 25.
    Akishev Y, Goossens O, Callebaut T, Leys C, Napartovich A, Trushkin N (2001) J Phys D Appl Phys 34(18):2875ADSCrossRefGoogle Scholar
  26. 26.
    Eliasson B, Hirth M, Kogelschatz U (1987) J Phys D Appl Phys 20(11):1421ADSCrossRefGoogle Scholar
  27. 27.
    Kohno H, Berezin AA, Chang JS, Tamura M, Yamamoto T, Shibuya A, Hondo S (1998) IEEE Trans Ind Appl 34(5):953CrossRefGoogle Scholar
  28. 28.
    NIST, 2011, Chemical kinetics database, http://www.kinetics.nist.gov
  29. 29.
    Penetrante BM, Hsiao MC, Bardsley JN, Merritt BT, Vogtlin GE, Kuthi A, Burkhart CP, Bayless JR (1997) Plasma Sources Sci Technol 6(3):251ADSCrossRefGoogle Scholar
  30. 30.
    Evans D, Rosocha LA, Anderson GK, Coogan JJ, Kushner MJ (1993) J Appl Phys 74(9):5378ADSCrossRefGoogle Scholar
  31. 31.
    Hsiao MC, Merritt BT, Penetrante BM, Vogtlin GE, Wallman PH (1995) J Appl Phys 78(5):3451ADSCrossRefGoogle Scholar
  32. 32.
    Kirkpatrick MJ, Finney WC, Locke BR (2003) Plasmas Polym 8(3):165CrossRefGoogle Scholar
  33. 33.
    Vitale SA, Hadidi K, Cohn DR, Falkos P (1997) Plasma Chem Plasma Process 17(1):59CrossRefGoogle Scholar
  34. 34.
    NIST, Chemistry Webbook, Standard Reference Database Number 69, http://webbook.nist.gov/chemistry/
  35. 35.
    Socrates G (2004) Infrared and Raman characteristic group frequencies: Tables and charts, 3rd edn. Wiley, West Sussex, EnglandGoogle Scholar
  36. 36.
    Szymanski HA (1964) Interpreted infrared spectra. Plenum Press, NYGoogle Scholar
  37. 37.
    Szymanski HA (1964) IR theory and practice of infrared spectroscopy. Plenum Press, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Arne M. Vandenbroucke
    • 1
  • Minh Tuan Nguyen Dinh
    • 2
  • Jean-Marc Giraudon
    • 2
  • Rino Morent
    • 1
  • Nathalie De Geyter
    • 1
  • Jean-Francois Lamonier
    • 2
  • Christophe Leys
    • 1
  1. 1.Department of Applied Physics, Research Unit Plasma Technology, Faculty of EngineeringGhent UniversityGhentBelgium
  2. 2.Université des Sciences et Technologies de Lille, Unité de Catalyse et Chimie du Solide UMR CNRS 8181Villeneuve d’ AscqFrance

Personalised recommendations