Plasma Chemistry and Plasma Processing

, Volume 31, Issue 1, pp 157–174 | Cite as

Plasma Composition by Mass Spectrometry in a Ar-SiH4-H2 LEPECVD Process During nc-Si Deposition

Original Paper

Abstract

Mass spectrometry has been used to assess plasma composition during a low-energy plasma-enhanced chemical vapor deposition (LEPECVD) process using argon-silane-hydrogen (Ar-SiH4-H2) gas mixtures with input flows of 50 sccm Ar, 2–20 sccm SiH4 and 0–50 sccm H2 at total pressures of 1–4 Pa. Energy-integrated ion densities, residual gas analysis and threshold ionization mass spectrometry have been used to characterize the transition from amorphous (a-Si) to nano-crystalline silicon (nc-Si) deposition at constant LEPECVD operating parameters. While relative ion densities have a marked decrease with H2 input, the densities of SiHx (x < 4) radicals show evolution trends depending on the SiH4 and H2 input. For conditions leading to nc-Si growth a turning point is reached above which SiH is the main radical. Observed SiHx density trends with H2 input are explained based on kinetic reaction rates calculated from previously obtained Langmuir probe data.

Keywords

Mass spectrometry Silane nc-Si Hydrogen dilution LEPECVD 

References

  1. 1.
    Strahm B, Howling AA, Sansonnens L, Hollenstein Ch (2007) Plasma Sources Sci Technol 16:80–89CrossRefADSGoogle Scholar
  2. 2.
    Matsuda A (2004) J Non Cryst Solids 338(340):1–12CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Shah AV, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U (2003) Solar Energy Mat Solar Cells 78:469CrossRefGoogle Scholar
  4. 4.
    He Y, Yin C, Cheng G, Wang L, Hu GY (1994) J Appl Phys 75(2):797–803CrossRefADSGoogle Scholar
  5. 5.
    Klein S, Finger F, Carius R (2005) J Appl Phys 98:024905CrossRefADSGoogle Scholar
  6. 6.
    Dingemans G, van den Donker MN, Hrunski D, Gordijn A, Kessels WMM, van de Sanden MCM (2008) App Phys Lett 93:111914CrossRefADSGoogle Scholar
  7. 7.
    Amanatides E, Mataras D, Rapakoulias D, van den Donker MN, Rech B (2005) Solar Energy Mat Solar Cells 87:765–805CrossRefGoogle Scholar
  8. 8.
    Wu Z, Sun J, Lei Q, Zhao Y, Geng X, Xi J (2006) Physica E 33:125–129CrossRefADSGoogle Scholar
  9. 9.
    Strahm B, Howling AA, Sansonnens L, Hollenstein CH (2007) J Vac Sci Technol A24(4):1198–1202Google Scholar
  10. 10.
    Katsia E, Amanatides E, Mataras D, Rapakoulias D (2004) 19th European photovoltaic solar energy confererence, 7–11 June 2004, Paris, FranceGoogle Scholar
  11. 11.
    Kondo M, Fukawa M, Guo ML, Matsuda A (2000) J Non Cryst Solids 266–269:84–89CrossRefGoogle Scholar
  12. 12.
    Rath JK (2003) J Non Cryst Solids 76:431–487Google Scholar
  13. 13.
    Robertson R, Hills D, Chatam H, Gallagher A (1983) Appl Phys Lett 43(6):544–546CrossRefADSGoogle Scholar
  14. 14.
    Kae-Nune P, Perrin J, Guillon J, Jolly J (1994) Jpn J Appl Phys 33:4303–4307CrossRefADSGoogle Scholar
  15. 15.
    Kae-Nune P, Perrin J, Guillon J, Jolly J (1995) Plasma Sour Sci Technol 4:250–259CrossRefADSGoogle Scholar
  16. 16.
    Kessels WMM, Leewis CM, van de Sanden MCM, Schram DC (2000) J Vac Sci Tecnol A18(5):2153–2163CrossRefADSGoogle Scholar
  17. 17.
    Rosenblad C, von Känel H, Kummer M, Dommann A, Müller E (2000) Appl Phys Lett 76:427–429CrossRefADSGoogle Scholar
  18. 18.
    Acciary M, Binetti S, Bollani M, Comotti A, Fumagalli L, Pizzini S, von Känel H (2005) Sol Energ Mat Sol C 87:11–24CrossRefGoogle Scholar
  19. 19.
    Le Donne A, Binetti S, Isella G, Pizzini S (2008) Electrochem Solid St 11:P5–P7CrossRefGoogle Scholar
  20. 20.
    Le Donne A, Binetti S, Isella G, Pichaud B, Texier M, Acciarri M, Pizzini S (2008) Appl Sur Sci 254:2804–2808CrossRefADSGoogle Scholar
  21. 21.
    Moiseev T, Chrastina D, Isella G, Cavallotti C (2009) J Phys D Appl Phys 42:072003CrossRefADSGoogle Scholar
  22. 22.
    Moiseev T, Chrastina D, Isella G, Cavallotti C (2009) J Phys D Appl Phys 42:225202CrossRefADSGoogle Scholar
  23. 23.
    Agarwal S, Quax GWW, van de Sanden MCM, Maroudas D, Aydila ES (2004) J Vac Sci Technol A22(1):71–81ADSGoogle Scholar
  24. 24.
    Janev RK, Reiter D (2003) Contrib Plasma Phys 43:401–417CrossRefADSGoogle Scholar
  25. 25.
    Basner R, Schmidt M, Tarnovsky V, Becker K, Deutsch H (1997) Int J Mass Spectro Ion Proc 171:83–93CrossRefADSGoogle Scholar
  26. 26.
    Tarnovsky V, Deutsch H, Becker K (1996) J Chem Phys 105(15):6315–6321CrossRefADSGoogle Scholar
  27. 27.
    Pinnaduwage LA, Datskos P (1997) J Appl Phys 81(12):7715CrossRefADSGoogle Scholar
  28. 28.
    Helm H (1988) Physical Rev A 38(7):3425–3429CrossRefADSGoogle Scholar
  29. 29.
    NIST Physical reference data electron-impact cross-sections for ionization and excitation. http://physics.nist.gov/PhysRefData/Ionization/Xsection.html
  30. 30.
    Freund RS, Wetzel RC, Shul RJ, HAyes TR (1990) Phys Rev A 7(41):3575–3595CrossRefADSGoogle Scholar
  31. 31.
    Djurić N, Bell EW, Guo XQ, Dunn GH (1993) Phys Rev A 6(47):4786–4793CrossRefADSGoogle Scholar
  32. 32.
    Bogaerts AA (2008) J. Anal At Spectrom 23:1476–1486CrossRefGoogle Scholar
  33. 33.
    Netys E, Yan M, Bogaerts A, Gijbels R (2003) J Appl Phys 93(9):5025–5033CrossRefADSGoogle Scholar
  34. 34.
    Brian KM, Michael RZ (1995) J Appl Phys 77(11):5538–5544CrossRefGoogle Scholar
  35. 35.
    Mai Y, Klein S, Geng X, Finger F (2004) Appl Phys Lett 85:14CrossRefGoogle Scholar
  36. 36.
    Strahm B, Howling AA, Sansonnens L, Hollenstein CH (2007) J Vac Sci Technol A 24(4):1198–1202CrossRefGoogle Scholar
  37. 37.
    Ganguly G, Masuda A (1996) J Non-Cryst Solids 198(200):1003–1006CrossRefADSGoogle Scholar
  38. 38.
    Kato K, Iizuka S, Ganguly G, Ikeda T, Masuda A, Sato N (1997) Jpn J Appl Phys 36:4547–4550CrossRefADSGoogle Scholar
  39. 39.
    Zhang FR, Amanatides E, Mataras D, Zhao Y (2008) Thin Solid Films 516:6829–6833CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Politecnico di Milano, Polo Regionale di Como, LNESSComoItaly

Personalised recommendations