Advertisement

Plasma Chemistry and Plasma Processing

, Volume 31, Issue 1, pp 41–50 | Cite as

Understanding OH Yields in Electron Beam Irradiation of Humid N2

  • Karen L. Schmitt
  • Theodore S. Dibble
Original Paper

Abstract

Recent experimental work by Hakoda et al. attempted to determine the G-value of OH radical in electron-beam irradiation of humid N2 using the conversion of CO to CO2 to titrate OH. Kinetic modeling is used to simulate the experiment of Hakoda et al. in an attempt to determine the validity of their assumptions and the reason the observed G-value was higher than expected. The model predicts CO2 production that is roughly 25% lower than observed and OH production about 10% higher than concluded from experimental data. This apparent contradiction is resolved by understanding the detailed chemistry of the OH + CO reaction and the fate of the thermalized HOCO intermediate. Analysis of the reactions producing OH indicate that the sources of OH are significantly different in humid air than in humid N2, and the G-value for OH is much higher in humid air than humid N2.

Keywords

Electron beam Hydroxyl radical ·OH Kinetics HOCO 

Notes

Acknowledgments

This research was supported by grant CTS-0626302 from the National Science Foundation.

References

  1. 1.
    Tokunaga O, Nishimura N, Suzuki N, Washino M (1978) Radiat Phys chem 11:117ADSGoogle Scholar
  2. 2.
    Chmielewski AG, Ostapczuk A, Zimek Z, Licki J, Kubica K (2002) Radiat Phys chem 63:653CrossRefADSGoogle Scholar
  3. 3.
    Ponomarev AV, Makarov IE, Saifullin NR, Syrtlanov AS, Pikaev AK (2002) Radiat Phys chem 65:71CrossRefADSGoogle Scholar
  4. 4.
    Doi Y, Nakanishi I, Konno Y (2000) Radiat Phys chem 57:495CrossRefADSGoogle Scholar
  5. 5.
    Mätzing H (1991) Adv Chem Phys 80:315CrossRefGoogle Scholar
  6. 6.
    Hirota K, Sakai H, Washio M, Kojima T (2004) Ind Eng Chem Res 43:1185CrossRefGoogle Scholar
  7. 7.
    Han D-H, Stuchinskaya T, Won Y-S, Park W-S, Lim J-K (2003) Radiat Phys chem 67:51CrossRefADSGoogle Scholar
  8. 8.
    Hashimoto S, Hakoda T, Hirata K, Arai H (2000) Radiat Phys chem 57:485CrossRefADSGoogle Scholar
  9. 9.
    Hirota K, Hakoda T, Arai H, Hashimoto S (2002) Radiat Phys chem 65:415CrossRefADSGoogle Scholar
  10. 10.
    Hakoda T, Shimada A, Matsumoto K, Hirota K (2009) Plasma Chem Plasma Process 29:69CrossRefGoogle Scholar
  11. 11.
    Schmidt KL, Murray DM, Dibble TS (2009) Plasma Chem Plasma Process 29:347CrossRefGoogle Scholar
  12. 12.
    Senosiain JP, Musgrave CB, Golden DM (2003) Int J Chem Kinet 35:464CrossRefGoogle Scholar
  13. 13.
    Willis C, Boyd AW (1976) Int J Radiat Phys Chem 8:71CrossRefGoogle Scholar
  14. 14.
    Lowke JJ, Morrow R (1995) IEEE Trans Plasma Sci 23:661CrossRefADSGoogle Scholar
  15. 15.
    Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207CrossRefADSGoogle Scholar
  16. 16.
    Eichwald O, Yousfi M, Hennad A, Benabdessadok MD (1997) J Appl Phys 82:4781CrossRefADSGoogle Scholar
  17. 17.
    Herron JT, Green DS (2001) Plasma Chem Plasma Process 21:459CrossRefGoogle Scholar
  18. 18.
    Sander SP (2006) Chemical Kinetics Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publ 06–2, National Aeronautics Space Administration, Jet Propulsion Laboratory. California Institute of Technology, Pasadena, CAGoogle Scholar
  19. 19.
    Ianni JC (2009) Kintecus, Windows Version 3.96, www.kintecus.com
  20. 20.
    Ianni JC (2003) A Comparison of the Bader-Deuflhard the Cash-Karp Runge-Kutta integrators for the GRI-MECH 30 model based on the chemical kinetics code kintecus. In: Bathe KJ (ed) Computational fluid solid mechanics. Elsevier Science Ltd, Oxford, UK, pp 1368–1372CrossRefGoogle Scholar
  21. 21.
    Yu HG, Muckerman JT, Francisco JS (2005) J Phys Chem A 109:5230CrossRefGoogle Scholar
  22. 22.
    Petty JT, Harrison JA, Moore CB, Yu HG, Muckerman JT, Francisco JS (1993) J Phys Chem 97:11194CrossRefGoogle Scholar
  23. 23.
    Yu HG, Muckerman JT, Francisco JS (2007) J Chem Phys 127:094302CrossRefADSGoogle Scholar
  24. 24.
    Dibble TS, Zeng Y (2010) Chem Phys Lett 495:170CrossRefADSGoogle Scholar
  25. 25.
    Yu HG, Francisco JS (2008) J Chem Phys 128:244315CrossRefADSGoogle Scholar
  26. 26.
    Becker KH, Kurtenbach R, Schmidt F, Wiesen P (2000) Combust Flame 120:570CrossRefGoogle Scholar
  27. 27.
    Brownsword RA, Hancock G, Heard DE (1997) J Chem Soc Faraday Trans 93:2473CrossRefGoogle Scholar
  28. 28.
    Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just Th, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1992) J Phys Chem Ref Data 21:411CrossRefADSGoogle Scholar
  29. 29.
    Cooper WF, Park J, Hershberger JF (1993) J Phys Chem 97:3283CrossRefGoogle Scholar
  30. 30.
    Lin MC, He Y, Melius CF (1993) J Phys Chem 97:9124CrossRefGoogle Scholar
  31. 31.
    Tsang W (1992) J Phys Chem Ref Data 21:753CrossRefADSGoogle Scholar
  32. 32.
    Heidner RF III, Husain D, Wiesenfeld JR (1973) J Chem Soc Faraday Trans 2 69:927CrossRefGoogle Scholar
  33. 33.
    Miller RE (1966) J Mol Spectrosc 19:18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Chemistry DepartmentSUNY-Environmental Science and ForestrySyracuseUSA

Personalised recommendations