Plasma Chemistry and Plasma Processing

, Volume 30, Issue 5, pp 697–706 | Cite as

Activation of Spruce Wood Surfaces by Plasma Treatment After Long Terms of Natural Surface Inactivation

  • Ismail Aydin
  • Cenk Demirkir
Original Paper


Surface inactivation is a phenomenon that causes poor adhesion. A wood surface exposed to contaminants such as dust or atmospheric grime can experience surface inactivation. Inactivation mechanisms can reduce the attractive forces on the wood surface and lead to a decrease in wettability. Plasma treatment has been applied to recover inactivated wood surfaces for better adhesion and bonding. Plasma treatment technology is very simple and the cost is rather low. In addition, this treatment produces no environmental pollution. In this study, low pressure plasma treatment was applied to reactivate the surfaces of spruce wood for glue bonding and to increase wettability after a 9-year period of natural surface inactivation. Changes in contact angles, surface energy, surface colour and bonding strength of inactivated and oxygen plasma treated wood surfaces were studied. Wettability, bonding and other mechanical strength properties of plywood panels increased with the oxygen plasma treatment.


Wood Plasma treatment Natural surface inactivation Wettability Bonding strength 



The authors acknowledge the financial support of this study by TUBITAK (The Scientific and Technical Research Council of Turkey) (Project No: 108O655).


  1. 1.
    Gunnels DV, Gardner DJ, Wolcott MP (1994) Wood Fiber Sci 26:447Google Scholar
  2. 2.
    Jaić M, Živanović R, Stevanović-Janežić T, Dekanski A (1998) Holz Roh Werkst 34:37Google Scholar
  3. 3.
    Nguyen T, Johns WE (1979) Wood Sci Technol 13:29CrossRefGoogle Scholar
  4. 4.
    Forbes C (1998) Wood surface inactivation and adhesive bonding. Wood product notes. North Carolina State University, Department of Wood and Paper Science, College of Forest Resources.
  5. 5.
    Sernek M, Kamke FA, Glasser W (2002) Virginia Tech. University, Wood-based composites center, Technical Report No. 112Google Scholar
  6. 6.
    Marra AA (1992) Technology of wood bonding: principles in practice. Van Nost. Reinh., New York.Google Scholar
  7. 7.
    Christiansen AW (1991) Wood Fiber Sci 23:69Google Scholar
  8. 8.
    Gindl M, Reiterer A, Sinn G, Stanzl-Tschegg SE (2004) Holz Roh Werkst 62:273CrossRefGoogle Scholar
  9. 9.
    Wellons JD, Krahmer RL, Sandoe MD, Jokerst RW (1983) For Prod J 33:27Google Scholar
  10. 10.
    Aydin I (2004) Appl Surf Sci 233:268CrossRefADSGoogle Scholar
  11. 11.
    Belfas J, Groves KW, Evans PD (1993) Holz Roh Werkst 51:253CrossRefGoogle Scholar
  12. 12.
    Gardner DJ, Elder TJ (1988) Wood Fiber Sci 20:378Google Scholar
  13. 13.
    Kelley SS, Young RA, Rammon RM, Gillespie RH (1983) For Prod J 2:21Google Scholar
  14. 14.
    Seki Y, Sever B, Sarıkanat M, Gulec HA, Tavman IH (2009) In: 5th international advanced technologies symposium (IATS’09), Karabuk, TurkeyGoogle Scholar
  15. 15.
    Dilsiz N (1994) Plasma modified carbon fiber-epoxy composite system, Ph.D. Thesis, Middle East Technical University, Graduate School of Natural Applied Sciences, AnkaraGoogle Scholar
  16. 16.
  17. 17.
    Australian Government (2005) Recycling and end-of-life disposal of timber products, Forest and wood products research and development corporation, Project No: PN05.1017Google Scholar
  18. 18.
    Liptáková E, Kúdela J (1994) Holzforschung 48:139CrossRefGoogle Scholar
  19. 19.
    Wålinder M, Ström G (2001) Holzforschung 55:33Google Scholar
  20. 20.
    Aydin I, Colakoglu G (2002) In: Proceedings of sixth European panel products symposium, North Wales Conference Centre, LlandudnoGoogle Scholar
  21. 21.
    Gindl M, Sinn G, Gindl W, Reiterer A, Tschegg S (2000) Colloid Surf A 181:279CrossRefGoogle Scholar
  22. 22.
    Meijer M, Haemers S, Cobben W, Militz H (2000) Langmuir 16:9352CrossRefGoogle Scholar
  23. 23.
    ISO 7724-2 (1984) International organization for standardization, GenevaGoogle Scholar
  24. 24.
    Temiz A, Eikenes M, Yıldız ÜC, Evans GF, Jacobsen B (2003). In: The Proceedings of the 34th annual meeting of the international research group on wood preservation, IRG/Wp 03-20262, BrisbaneGoogle Scholar
  25. 25.
    TAPPI t m-45 (1992) TAPPI Press, AtlantaGoogle Scholar
  26. 26.
    EN 314 (1993) European Standardisation Committee, BrusselsGoogle Scholar
  27. 27.
    EN 310 (1993) European Standardisation Committee, BrusselsGoogle Scholar
  28. 28.
    Podgorski L, Chevet B, Onic L, Merlin A (2000) Int J Adhes Adhes 20:103CrossRefGoogle Scholar
  29. 29.
    Mahlberg R, Niemi HE, Denes F, Rowell RM (1998) Int J Adhes Adhes 18:283CrossRefGoogle Scholar
  30. 30.
    Gray VR (1962) For Prod J 12:452Google Scholar
  31. 31.
    Shupe TF, Hse CY, Wang WH (2001) Holzforschung 55:541CrossRefGoogle Scholar
  32. 32.
    Mahlberg R, Niemi HE, Denes FS, Rowell RM (1999) Langmuir 15:2985CrossRefGoogle Scholar
  33. 33.
    Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2009) Int J Adhes Adhes 29:18CrossRefGoogle Scholar
  34. 34.
    Zhang J, Kamdem DP, Temiz A (2009) Appl Surf Sci 256:842CrossRefADSGoogle Scholar
  35. 35.
    Nussbaum RM (1995) Holz Roh Werkst 53:384Google Scholar
  36. 36.
    Hse CY, Kuo M (1988) For Prod J 38:52Google Scholar
  37. 37.
    Kalnins MA, Knaebe MT (1993) Contact angle, wettability and adhesion. In: Mittal KL (ed.) VSP Publishing, Ultrecht, 971 pGoogle Scholar
  38. 38.
    Zhang HJ, Gardner DJ, Wang JZ, Shi Q (1997) For Prod J 47:69Google Scholar
  39. 39.
    Dougal EF, Krahmer RL, Wellons JD, Kanarek P (1980) For Prod J 30:48Google Scholar
  40. 40.
    Nussbaum RM (1999) Holz Roh Werkst 57:419CrossRefGoogle Scholar
  41. 41.
    Kim BS, Chun BH, Lee W, Hwang BS (2009) J Thermoplast Compos 22:21CrossRefGoogle Scholar
  42. 42.
    Liston EM (1989) J Adhesion 30:199CrossRefGoogle Scholar
  43. 43.
    Bozkurt AY, Goker Y (1986) Layered wood materials technology. Istanbul University, Faculty of Forestry Pubs., No: 3401, IstanbulGoogle Scholar
  44. 44.
    Hon DNS, Shiraishi N (2001) Wood and cellulose chemistry, Chap. 11. Marcel Dekker Inc, New YorkGoogle Scholar
  45. 45.
    Oltean L, Teischinger A, Hansmann C (2007) Holz Roh Werkst 66:51CrossRefGoogle Scholar
  46. 46.
    Sernek M (2002) Comparative analysis of inactivated wood surfaces. Ph.D. Thesis, Faculty of the Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of Forestry, Forest Industry Engineering DepartmentKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations