Plasma Chemistry and Plasma Processing

, Volume 30, Issue 5, pp 537–552 | Cite as

Electrical, Thermal and Optical Diagnostics of an Atmospheric Plasma Jet System

  • C. E. Nwankire
  • V. J. Law
  • A. Nindrayog
  • B. Twomey
  • K. Niemi
  • V. Milosavljević
  • W. G. Graham
  • D. P. Dowling
Original Paper

Abstract

Plasma diagnostics of atmospheric plasmas is a key tool in helping to understand processing performance issues. This paper presents an electrical, optical and thermographic imaging study of the PlasmaStream atmospheric plasma jet system. The system was found to exhibit three operating modes; one constricted/localized plasma and two extended volume plasmas. At low power and helium flows the plasma is localized at the electrodes and has the electrical properties of a corona/filamentary discharge with electrical chaotic temporal structure. With increasing discharge power and helium flow the plasma expands into the volume of the tube, becoming regular and homogeneous in appearance. Emission spectra show evidence of atomic oxygen, nitric oxide and the hydroxyl radical production. Plasma activated gas temperature deduced from the rotational temperature of nitrogen molecules was found to be of order of 400 K: whereas thermographic imaging of the quartz tube yielded surface temperatures between 319 and 347 K.

Keywords

Plasma jet Diagnostics Plasma diagnostics Optical emission Infrared thermography Corona 

Notes

Acknowledgments

This work is supported by Science Foundation Ireland Grant 08/SRC11411 and Enterprise Ireland grant CFDTD/7/IT/304. A Nindrayog was supported by a Northern Ireland Department of Education and Learning MSc studentship. V. Milosavljevic acknowledges support by Enterprise Ireland and the Ministry of Science and Technological Development of the Republic of Serbia.

References

  1. 1.
    Kogelschatz U (2002) IEEE Trans Plasma Sci 30:1400–1408CrossRefADSGoogle Scholar
  2. 2.
    Abolmasov S, Kroely L, Roca i Cabarrocas P (2009) Plasma Sources Sci Technol 18:015005CrossRefADSGoogle Scholar
  3. 3.
    Sato M (2008) Plasma Sources Sci Technol 17:024021CrossRefADSGoogle Scholar
  4. 4.
    Förster S, Mohr C, Viöl W (2005) Surf Coat Technol 200:827–830CrossRefGoogle Scholar
  5. 5.
    Reuter S, Niemi K, Schulz-von der Gathen V, Döbele HF (2009) Plasma Sources Sci Technol 18:015006CrossRefADSGoogle Scholar
  6. 6.
    Stoffels E, Flikweert A, Stoffels W, Kroesen G (2002) Plasma Sources Sci Technol 11:383–388CrossRefADSGoogle Scholar
  7. 7.
    Laroussi M, Tendero C, Lu X, Alla S, Hynes WL (2006) Plasma Process Polym 3:470–473CrossRefGoogle Scholar
  8. 8.
    Hong YC, Uhm HS (2006) Appl Phys Lett 89:221504CrossRefADSGoogle Scholar
  9. 9.
    Shi JJ, Deng XT, Hall R, Punnett JD, Kong MG (2003) J Appl Phys 94:6303–6310CrossRefADSGoogle Scholar
  10. 10.
    Simon A, Anghel S, Papiu M, Dinu O (2009) Nucl Instrum Methods Phys Res. B 267:438–441Google Scholar
  11. 11.
    Staack D, Farouk B, Gutsol A, Fridman A (2005) Plasma Sources Sci Technol 14:700–711CrossRefADSGoogle Scholar
  12. 12.
    O’Neill L, Dobbyn P, Castagna W, Plasma system, PCT patent WO2006/048650, p 8Google Scholar
  13. 13.
    Dobbyn P, O’Neill L, Atmospheric pressure plasma, PCT patent WO2009/034012, p 25Google Scholar
  14. 14.
    Nwankire CE, Ardhaoui M, Dowling DP (2009) Polym Int 58:996–1001CrossRefGoogle Scholar
  15. 15.
    O’Neill L, Shephard N, Leadley SR, O’Hare LA (2008) J Adhes 84:562–577CrossRefGoogle Scholar
  16. 16.
    Ardhaoui M, Naciri M, Mullen T, Brugha C, Keenan AK, Al-Rubeai M, Dowling DP (2010) Adhes Sci Technol 24:889–903CrossRefGoogle Scholar
  17. 17.
    Albaugh J, O’Sullivan C, O’Neill L (2008) Surf Coat Technol 203:844–847CrossRefGoogle Scholar
  18. 18.
    O’Neill L, O’Sullivan C (2009) Chem Vap Depos 15:21–26CrossRefGoogle Scholar
  19. 19.
    Nwankire CE, Dowling DP (2010) Adhes Sci Technol 24:1291–1302CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Law VJ, Milosavljevic V, O’Connor N, Lalor JF, Daniels S (2008) Rev Sci Instrum 79:094707–094710CrossRefADSGoogle Scholar
  22. 22.
    Walsh JL, Kong MG (2008) Appl Phys Lett 93:111501CrossRefADSGoogle Scholar
  23. 23.
    Radu I, Bartnikas R, Wertheimer M (2003) J Phys D Appl Phys 36:1284–1291CrossRefADSGoogle Scholar
  24. 24.
    Herbert PAF, O’Neill L, Jaroszynska-Wolinska J (2009) J Chem Mater 21:4401–4407CrossRefGoogle Scholar
  25. 25.
    Dowling DP, Ramamoorthy A, Rahman M, Mooney DA, MacElroy JMD (2009) Plasma Process Polym 6:S483–S489CrossRefGoogle Scholar
  26. 26.
    Chang J, Lawless P, Yamamoto T (1991) IEEE Trans Plasma Sci 19:1152–1166CrossRefADSGoogle Scholar
  27. 27.
    Law VJ, O’Connor N, Daniels S (2008) Piers Online 4:556–560CrossRefGoogle Scholar
  28. 28.
    Law VJ (2008) Vacuum 82:630–638CrossRefGoogle Scholar
  29. 29.
    Jidenko N, Petit M, Borra JP (2006) J Phys D Appl Phys 39:281–293CrossRefADSGoogle Scholar
  30. 30.
    Sun W, Liang T, Wang H, Li H, Bao C (2007) Plasma Sources Sci Technol 16:290–296CrossRefADSGoogle Scholar
  31. 31.
    Law VJ, O’Connor N, Twomey B, Dowling DP, Daniels S (2009) In: Skiadas CH et al (eds) Topics of chaotic systems: selected papers of chaos 2008 international conference. World scientific publishing, pp 204–213, 978–981-4271-33-2Google Scholar
  32. 32.
    Benedikt J, Focke K, Yanguas-Gil A, von Keudell A (2006) Appl Phys Lett 89:251504CrossRefADSGoogle Scholar
  33. 33.
    Pouvesle JM, Bouchoule A, Stevefelt J (1982) J Chem Phys 77:817–825CrossRefADSGoogle Scholar
  34. 34.
    Nersisyan G, Graham WG (2004) Plasma Sources Sci Technol 13:582–587CrossRefADSGoogle Scholar
  35. 35.
    Bibinov NK, Fateev AA, Wiesemann K (2001) J Phys D Appl Phys 34:1819–1826CrossRefADSGoogle Scholar
  36. 36.
    Twomey B, Nindrayog A, Niemi K, Graham WG, Dowling DP (2010) Plasma Chem Plasma Process PCPP-10-SV-0006 (submitted)Google Scholar
  37. 37.
    Laux C, Spence T, Kruger C, Zare R (2003) Plasma Sources Sci Technol 12:125–138CrossRefADSGoogle Scholar
  38. 38.
    Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Dijk Jv, Zimmermann JL (2009) New J Phys 11:115012CrossRefGoogle Scholar
  39. 39.
    Law VJ, Daniels S, Walsh JL, Kong MG, Graham LM, Gans T (2010) Plasma Sources Sci Technol 19:034008CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • C. E. Nwankire
    • 1
  • V. J. Law
    • 2
  • A. Nindrayog
    • 3
  • B. Twomey
    • 1
  • K. Niemi
    • 3
  • V. Milosavljević
    • 2
    • 4
  • W. G. Graham
    • 3
  • D. P. Dowling
    • 1
  1. 1.School of Mechanical and Materials EngineeringUniversity College DublinBelfield, Dublin 4Ireland
  2. 2.National Centre for Plasma Science and TechnologyDublin City UniversityGlasnevin, Dublin 9Ireland
  3. 3.Centre for Plasma Physics, Department of Physics and AstronomyQueen’s University BelfastBelfastNorthern Ireland
  4. 4.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations