Plasma Chemistry and Plasma Processing

, Volume 30, Issue 4, pp 525–536 | Cite as

Influence of Discharge Atmosphere on the Ageing Behaviour of Plasma-Treated Polylactic Acid

  • R. Morent
  • N. De Geyter
  • M. Trentesaux
  • L. Gengembre
  • P. Dubruel
  • C. Leys
  • E. Payen
Original Paper


The effect of a plasma treatment on polymers is not permanent, since the treated surfaces tend to recover to the untreated state (ageing process). This paper investigates the influence of discharge atmosphere on the ageing behaviour of plasma-treated PLA foils: these foils are plasma-treated with a DBD in 4 different atmospheres (air, nitrogen, argon and helium) and are subsequently stored in air. Results of contact angle and XPS measurements show that the discharge gas has a significant influence on the ageing behaviour of the PLA foils. This influence can be explained by the different cross-linking degree of the plasma-treated surfaces: helium and argon plasma-treated PLA films have a high cross-linking degree, which limits polymer chain mobility and as a result reduces the ageing process. In contrast, the ageing behaviour of air and nitrogen plasma-treated films is more pronounced due to their low cross-linking degree.


Polylactic acid (PLA) Ageing Dielectric barrier discharge Contact angle X-ray photoelectron spectroscopy 



This research was part of the Interuniversity Attraction Poles (IAP) Phase VI-Contract P6/08 (Belgian Science Policy).


  1. 1.
    Alves CM, Yang Y, Marton D, Carnes DL, Ong JL, Sylvia VL, Dean DD, Reis RL, Agrawal CM (2008) J Biomed Mater Res B 87B:59CrossRefGoogle Scholar
  2. 2.
    Ding Z, Chen JN, Gao SY, Chang JB, Zhang JF, Kang ET (2004) Biomaterials 25:1059CrossRefGoogle Scholar
  3. 3.
    De Geyter N, Morent R, Leys C, Gengembre L, Payen E (2007) Surf Coat Technol 201:7066CrossRefGoogle Scholar
  4. 4.
    Kill G, Hunter DH, McIntyre NS (1996) J Polym Sci Pol Chem 34:2299CrossRefGoogle Scholar
  5. 5.
    Tsafack MJ, Levalois-Grutzmacher J (2007) Surf Coat Technol 201:5789CrossRefGoogle Scholar
  6. 6.
    Yip J, Chan K, Sin KM, Lau KS (2002) J Mater Process Tech 123:5CrossRefGoogle Scholar
  7. 7.
    De Geyter N, Morent R, Leys C (2008) Nucl Instrum Meth B 266:3086CrossRefADSGoogle Scholar
  8. 8.
    Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2007) Surf Coat Technol 201:7847CrossRefGoogle Scholar
  9. 9.
    Nakamatsu J, Delgado-Aparicio LF, Da Silva R, Soberon F (1999) J Adhes Sci Technol 13:753CrossRefGoogle Scholar
  10. 10.
    Ferreira BMP, Pinheiro LMP, Nascente PAP, Ferreira MJ, Duek EAR (2009) Mat Sci Eng C-Bio S 29:806CrossRefGoogle Scholar
  11. 11.
    Inagaki N, Narushima K, Tsutsui Y, Ohyama Y (2002) J Adhes Sci Technol 16:1041CrossRefGoogle Scholar
  12. 12.
    Khorasani MT, Mirzadeh H, Irani S (2008) Radiat Phys chem 77:280CrossRefADSGoogle Scholar
  13. 13.
    Yang J, Bei JZ, Wang SG (2002) Biomaterials 23:2607Google Scholar
  14. 14.
    Yang J, Shi GX, Bei JZ, Wang SG, Cao YL, Shang QX, Yang GG, Wang WJ (2002) J Biomed Mater Res 62:438CrossRefGoogle Scholar
  15. 15.
    Borcia G, Brown NMD (2007) J Phys D Appl Phys 40:1927CrossRefADSGoogle Scholar
  16. 16.
    Heyse P, Dams R, Paulussen S, Houthofd K, Janssen K, Jacobs PA, Sels BF (2007) Plasma Process Polym 4:145CrossRefGoogle Scholar
  17. 17.
    Kasih TP, Kuroda SI, Kubota H (2007) Chem Vap Depos 13:169CrossRefGoogle Scholar
  18. 18.
    Massines F, Mayoux C, Messaoudi R, Rabehi A, Segur P (1992) In proceedings of the tenth international conference on gas discharges and their applications 730Google Scholar
  19. 19.
    Morent R, De Geyter N, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E (2008) Eur Phys J-Appl Phys 43:289CrossRefADSGoogle Scholar
  20. 20.
    De Geyter N, Morent R, Leys C, Gengembre L, Payen E, Van Vlierberghe S, Schacht E (2008) Surf Coat Technol 202:3000CrossRefGoogle Scholar
  21. 21.
    Morent R, De Geyter N, Axisa F, De Smet N, Gengembre L, De Leersnyder E, Leys C, Vanfleteren J, Rymarczyk-Machal M, Schacht E, Payen E (2007) J Phys D Appl Phys 40:7392CrossRefADSGoogle Scholar
  22. 22.
    Borcia G, Anderson CA, Brown NMD (2004) Appl Surf Sci 225:186CrossRefADSGoogle Scholar
  23. 23.
    Borcia G, Anderson CA, Brown NMD (2005) Plasma Sources Sci T 14:259CrossRefADSGoogle Scholar
  24. 24.
    Kogelschatz U, Eliasson B, Egli W (1997) J Phys IV 7:47CrossRefGoogle Scholar
  25. 25.
    Kogelschatz U (2003) Plasma Chem Plasma P 23:1CrossRefGoogle Scholar
  26. 26.
    Pietsch GJ (2001) Contrib Plasm Phys 41:620CrossRefADSGoogle Scholar
  27. 27.
    Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) Vacuum 71:417CrossRefGoogle Scholar
  28. 28.
    Kanazawa S, Kogoma M, Moriwaki T, Okazaki S (1988) J Phys D Appl Phys 21:838CrossRefADSGoogle Scholar
  29. 29.
    Massines F, Gouda G (1998) J Phys D Appl Phys 31:3411CrossRefADSGoogle Scholar
  30. 30.
    Massines F, Rabehi A, Decomps P, Gadri RB, Segur P, Mayoux C (1998) J Appl Phys 83:2950CrossRefADSGoogle Scholar
  31. 31.
    Massines F, Segur P, Gherardi N, Khamphan C, Ricard A (2003) Surf Coat Technol 174:8CrossRefGoogle Scholar
  32. 32.
    Trunec D, Brablec A, Stastny F (1998) Contrib Plasm Phys 38:435CrossRefADSGoogle Scholar
  33. 33.
    Trunec D, Navratil Z, Stahel P, Zajickova L, Bursikova V (2004) J Phys D Appl Phys 37:2112CrossRefADSGoogle Scholar
  34. 34.
    Nozaki T, Unno Y, Miyazaki Y, Okazaki K (2001) In proceedings of 15th international symposium on plasma chemistry (ISPC-15) 77Google Scholar
  35. 35.
    Massines F, Gherardi N, Fornelli A, Martin S (2005) Surf Coat Technol 200:1855CrossRefGoogle Scholar
  36. 36.
    Moravej M, Yang X, Nowling GR, Chang JP, Hicks RF, Babayan SE (2004) J Appl Phys 96:7011CrossRefADSGoogle Scholar
  37. 37.
    Papoular R (1965) Electrical phenomena in gases. Iliffe Books Ltd, LondonGoogle Scholar
  38. 38.
    Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2007) Text Res J 77:471CrossRefGoogle Scholar
  39. 39.
    Hirotsu T, Nakayama K, Tsujisaka T, Mas A, Schue F (2002) Polym Eng Sci 42:299CrossRefGoogle Scholar
  40. 40.
    Paynter RW (2000) Surf Interface Anal 29:56CrossRefGoogle Scholar
  41. 41.
    Sharma R, Holcomb E, Trigwell S, Mazumder M (2007) J Electrostat 65:269CrossRefGoogle Scholar
  42. 42.
    Wilson DJ, Williams RL, Pond RC (2001) Surf Interface Anal 31:397CrossRefGoogle Scholar
  43. 43.
    Massines F, Gouda G, Gherardi N, Duran M, Croquesel E (2001) Plasmas Polym 6:35CrossRefGoogle Scholar
  44. 44.
    Dorai R, Kushner MJ (2003) J Phys D Appl Phys 36:666CrossRefADSGoogle Scholar
  45. 45.
    Tatoulian M, Arefi-Khonsari F, Mabillerouger I, Amouroux J, Gheorgiu M, Bouchier D (1995) J Adhes Sci Technol 9:923CrossRefGoogle Scholar
  46. 46.
    Ricard A, Decomps P, Massines F (1999) Surf Coat Technol 112:1CrossRefGoogle Scholar
  47. 47.
    Banik I, Kim KS, Yun YI, Kim DH, Ryu CM, Park CS, Sur GS, Park CE (2003) Polymer 44:1163CrossRefGoogle Scholar
  48. 48.
    Yun YI, Kim KS, Uhm SJ, Khatua BB, Cho K, Kim JK, Park CE (2004) J Adhes Sci Technol 18:1279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • R. Morent
    • 1
  • N. De Geyter
    • 1
  • M. Trentesaux
    • 3
  • L. Gengembre
    • 3
  • P. Dubruel
    • 2
  • C. Leys
    • 1
  • E. Payen
    • 3
  1. 1.Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of EngineeringGhent UniversityGhentBelgium
  2. 2.Polymer Chemistry and Biomaterials Research Group (PBM), Department of Organic Chemistry, Faculty of SciencesGhent UniversityGhentBelgium
  3. 3.Unité de Catalyse et Chimie du Solide, UMR CNRS 8181Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance

Personalised recommendations