Advertisement

Plasma Chemistry and Plasma Processing

, Volume 29, Issue 5, pp 347–362 | Cite as

Towards a Consistent Chemical Kinetic Model of Electron Beam Irradiation of Humid Air

  • Karen L. Schmitt
  • D. M. Murray
  • Theodore S. Dibble
Original Paper

Abstract

A chemical kinetic model has been assembled based upon previous literature to assist in developing a better understanding of the mechanism behind the electron beam irradiation of humid air. Thermodynamic determination of the feasibility of particular product sets was used to eliminate certain reactions proposed previously, dynamical models were used to guide the choice of product sets, and updated rate constants were obtained from the current literature. Tracers were also used to determine significant sources and sinks of hydroxyl radical, an important species in the irradiation process. Modeling results for selected species have been presented for 1 atm of air at 298.15 K and 50% relative humidity, at doses of 1, 5, 10, 25, and 50 kGy delivered over 0.8 s. The concentrations of the most abundant ions, radicals, and stable reaction products have been included, as well as the calculated major sources and sinks of hydroxyl radical.

Keywords

Electron beam Gas phase kinetics Radicals Ionic clusters Anion–cation reactions 

Notes

Acknowledgments

This research was supported by grant CTS-0626302 from the National Science Foundation. The authors thank M. R. Cleland for sharing results of the ITS code, M. S. Driscoll for helpful conversations, and H. Hu for help with quantum calculations.

Supplementary material

11090_2009_9186_MOESM1_ESM.doc (1021 kb)
Supplementary material 1 (DOC 1021 kb)

References

  1. 1.
    Tokunaga O, Nishimura N, Suzuki N, Washino M (1978) Radiat Phys Chem 11:117ADSGoogle Scholar
  2. 2.
    Chmielewski AG, Ostapczuk A, Zimek Z, Licki J, Kubica K (2002) Radiat Phys Chem 63:653CrossRefADSGoogle Scholar
  3. 3.
    Ponomarev AV, Makarov IE, Saifullin NR, Syrtlanov ASh, Pikaev AK (2002) Radiat Phys Chem 65:71CrossRefADSGoogle Scholar
  4. 4.
    Mätzing H (1991) Advan Chem Phys 80:315CrossRefGoogle Scholar
  5. 5.
    Lowke JJ, Morrow R (1995) IEEE Trans Plasma Sci 23:661CrossRefADSGoogle Scholar
  6. 6.
    Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207CrossRefADSGoogle Scholar
  7. 7.
    Eichwald O, Yousfi M, Hennad A, Benabdessadok MD (1997) J Appl Phys 82:4781CrossRefADSGoogle Scholar
  8. 8.
    Sieck LW, Herron JT, Green DS (2000) Plasma Chem Plasma Process 20:235CrossRefGoogle Scholar
  9. 9.
    Herron JT, Green DS (2001) Plasma Chem Plasma Process 21:459CrossRefGoogle Scholar
  10. 10.
    Doi Y, Nakanishi I, Konno Y (2000) Radiat Phys Chem 57:495CrossRefADSGoogle Scholar
  11. 11.
    Hirota K, Sakai H, Washio M, Kojima T (2004) Ind Eng Chem Res 43:1185CrossRefGoogle Scholar
  12. 12.
    Han D-H, Stuchinskaya T, Won Y-S, Park W-S, Lim J-K (2003) Radiat Phys Chem 67:51CrossRefADSGoogle Scholar
  13. 13.
    Hashimoto S, Hakoda T, Hirata K, Arai H (2000) Radiat Phys Chem 57:485CrossRefADSGoogle Scholar
  14. 14.
    Hirota K, Hakoda T, Arai H, Hashimoto S (2002) Radiat Phys Chem 65:415CrossRefADSGoogle Scholar
  15. 15.
    Willis C, Boyd AW (1976) Int J Radiat Phys Chem 8:71CrossRefGoogle Scholar
  16. 16.
    Ianni JC, Kintecus (2002) Windows version 2.80, www.kintecus.com
  17. 17.
    Ianni JC (2003) In: Bathe KJ (ed) A comparison of the Bader-Deuflhard and the Cash-Karp Runge-Kutta Integrators for the GRI-MECH 3.0 Model based on the chemical kinetics code kintecus. Computational fluid and solid mechanics. Elsevier Science Ltd, Oxford, pp 1368–1372Google Scholar
  18. 18.
    Halbleib JA, Kensek RP, Mehlhorn TA, Valdez GD, Seltzer SM, Berger MJ (1992) ITS Version 3.0: the integrated TIGER series of coupled electron/photon monte carlo transport codes, Sandia National Laboratories Report No. SAND91-1634, Sandia National LaboratoriesGoogle Scholar
  19. 19.
    Cleland MR, personal communication, unpublished research (2008) Based on the entrance doseGoogle Scholar
  20. 20.
    Sutherland CD, Zinn J (1975) Chemistry computations for irradiated hot air, Los Alamos scientific laboratory informal rept. LA-6055-MS, Los Alamos National Laboratory, Los Alamos, New MexicoGoogle Scholar
  21. 21.
    Sander SP, Friedl RR, Golden DM, Kurylo MJ, Moortgat GK, Keller-Rudek H, Wine PH, Ravishankara AR, Kolb CE, Molina MJ, Finlayson-Pitts BJ, Huie RE, Orkin VL (2006) Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 15, JPL Publ. 06–2. National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, PasadenaGoogle Scholar
  22. 22.
    Kircher CC, Sander SP (1984) J Phys Chem 88:2082CrossRefGoogle Scholar
  23. 23.
    Adams NG, Poterya V, Babcock LM (2006) Mass Spectrom Rev 25:798CrossRefGoogle Scholar
  24. 24.
    Smith D, Adams NG (1983) In: Brouillard F, McGowan JW (eds) Physics of ion-ion and electron-ion collisions. Plenum Press, New YorkGoogle Scholar
  25. 25.
    Knighton WB, Grimsrud EP (1996) In: Adams NG, Babcock LM (eds) Advances in gas phase ion chemistry. JAI Press, Greenwich, ConnecticutGoogle Scholar
  26. 26.
    Davidson JA, Sadowski CM, Schiff HI, Streit GE, Howard CJ, Jennings DA, Schmeltekopf AL (1976) J Chem Phys 64:57CrossRefADSGoogle Scholar
  27. 27.
    Pieniazek PA, VandeVondele J, Jungwirth P, Krylov AI, Bradforth SE (2008) J Phys Chem A 112:6159CrossRefGoogle Scholar
  28. 28.
    de Visser SP, de Koning LJ, Nibbering NMM (1995) J Phys Chem 99:15444CrossRefGoogle Scholar
  29. 29.
    Yamaguchi S, Kudoh S, Kawai Y, Okada Y, Orii T, Takeuchi K (2003) Chem Phys Lett 377:37CrossRefADSGoogle Scholar
  30. 30.
    Howard CJ, Bierbaum VM, Rundle HW, Kaufman F (1972) J Chem Phys 57:3491CrossRefADSGoogle Scholar
  31. 31.
    Fehsenfeld FC, Mosesman M, Ferguson EE (1971) J Chem Phys 55:2115CrossRefADSGoogle Scholar
  32. 32.
    Afeefy HY, Liebman JF, Stein SE Neutral thermochemical data. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov
  33. 33.
    Okabe H (1978) Photochemistry of small molecules. Wiley, New YorkGoogle Scholar
  34. 34.
    Arshadi M, Kebarle P (1970) J Phys Chem 74:1483CrossRefGoogle Scholar
  35. 35.
    Loew GH, Berkowitz DS, Chang S (1978) Astrophys J 219:458CrossRefADSGoogle Scholar
  36. 36.
    Gierczak T, Jiménez E, Riffault V, Burkholder JB, Ravishankara AR (2005) J Phys Chem A 109:586CrossRefGoogle Scholar
  37. 37.
    Liebman JF, Romm MJ, Meot-Ner M, Cybulski SM, Scheiner S (1991) J Phys Chem 95:1112CrossRefGoogle Scholar
  38. 38.
    Cao Y, Choi J-H, Haas B-M, Okumura M (1994) J Phys Chem 98:12176CrossRefGoogle Scholar
  39. 39.
    Willis C, Lossing FP, Back RA (1976) Can J Chem 54:1CrossRefGoogle Scholar
  40. 40.
    Sumathi R, Sengupta D, Nguyen MT (1998) J Phys Chem A 102:3175CrossRefGoogle Scholar
  41. 41.
    Matus MH, Arduengo AJIII, Dixon DA (2006) J Phys Chem A 110:10116CrossRefGoogle Scholar
  42. 42.
    H. Hu and T. S. Dibble, Unpublished quantum calculationsGoogle Scholar
  43. 43.
    Baer T, Hase WL (1996) Unimolecular reaction dynamics: theory and experiments. Oxford University Press, New YorkGoogle Scholar
  44. 44.
    Eisfeld W, Morokuma K (2003) J Chem Phys 119:4682CrossRefADSGoogle Scholar
  45. 45.
    Sennhauser ES, Armstrong DA (1978) Radiat Phys Chem 12:115ADSGoogle Scholar
  46. 46.
    Plastridge B, Cohen MH, Cowen KA, Wood DA, Coe JV (1995) J Phys Chem 99:118CrossRefGoogle Scholar
  47. 47.
    Gioumousis G, Stevenson DP (1958) J Chem Phys 29:294CrossRefADSGoogle Scholar
  48. 48.
    Manion JA, Huie RE, Levin RD, Burgess DR Jr., Orkin VL, Tsang W, McGivern WS, Hudgens JW, Knyazev VD, Atkinson DB, Chai E, Tereza AM, Lin C-Y, Allison TC, Mallard WG, Westley F, Herron JT, Hampson RF, Frizzell DH, NIST chemical kinetics database, NIST standard reference database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12, National institute of standards and technology, Gaithersburg, Maryland, 20899–8320. http://kinetics.nist.gov/
  49. 49.
    Yang X, Zhang X, Castleman AW (1991) Internat J Mass Spectrom 109:339CrossRefGoogle Scholar
  50. 50.
    Hakoda T, Shimada A, Matsumoto K, Hirota K (2009) Plasma Chem Plasma Process 29:69CrossRefGoogle Scholar
  51. 51.
    Tokunaga O, Nishimura K, Suzuki N, Machi S, Washino M (1979) J Nuc Sci Technol 16:901Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Karen L. Schmitt
    • 1
  • D. M. Murray
    • 1
  • Theodore S. Dibble
    • 1
  1. 1.Chemistry DepartmentSUNY-Environmental Science and ForestrySyracuseUSA

Personalised recommendations