Plasma Chemistry and Plasma Processing

, Volume 29, Issue 4, pp 307–319 | Cite as

Synthesis of Al Nanopowders in an Anodic Arc

  • Jawad HaidarEmail author
Original Paper


Nanopowders of metals and metal oxides have been produced using an arc operated between a refractory rod anode and a hollow cathode (J. Haidar in A method and apparatus for production of material vapour, Australian Patent No. 756273, 1999). the arc attachment to the anode is through a small region of molten metal located at the tip of the rod anode. Heat from the arc evaporates the molten metal and the vapour is passed through the arc plasma before condensing into sub-micron particles downstream of the cathode. A precursor metal is continuously fed onto the tip of the anode to maintain the molten metal region and compensate for losses of materials due to evaporation. The particle size of the produced powder depends on the pressure in the arc chamber and for production of nanoparticles in the range below 100 nm we use a pressure of 100 torr. Aluminium has been used as a precursor material, leading to production of aluminium metal nanopowders when the arc is operated in argon and to aluminium oxide nanopowders for operation in air. For operation in air, the products are made of γ-Al2O3.


Plasma Arc Nanopowder Aluminium Gamma-Al2O3 


  1. 1.
    Haidar J (1999) A method and apparatus for production of material vapour. Australian Patent No. 756273. International Patent Application No. PCT/AU99/00588Google Scholar
  2. 2.
    Ryu T, Sohn HY, Hwang KS, Fang ZZ (2009) Int J Refract Metal Mater Fang Int J 27:149–154CrossRefGoogle Scholar
  3. 3.
    Kalyanaraman R, Yoo S, Krupashankara MS, Sudarshan TS, Dowding RJ (1998) Nanostruct Mater 10:1379–1392CrossRefGoogle Scholar
  4. 4.
    Joseph LHC (2007) Mater Lett 61:2753–2756CrossRefGoogle Scholar
  5. 5.
    Zhiqiang W, Tiandong X, Lifeng B, Jun W, Zhiguo W, Pengxun Y (2006) Mater Lett 60:766–770CrossRefGoogle Scholar
  6. 6.
    Ko TS, Yang S, Hsu HC, Chu CP, Lin HF, Liao SC, Lu TC, Kuo HC, Hsieh WF (2006) Mater Sci Eng B 134:54–58CrossRefGoogle Scholar
  7. 7.
    Vladimir A, Ekaterina I, Charles de I (2008) Mater Lett 62:2211–2214CrossRefGoogle Scholar
  8. 8.
    Chazelas C, Coudert JF, Jarrige J, Fauchais P (2006) J Euro Ceram Soc 26:3499–3507CrossRefGoogle Scholar
  9. 9.
    Suresh K, Selvarajan V, Mohai I (2008) Vacuum 82:482–490CrossRefGoogle Scholar
  10. 10.
    Rao NP, Lee HJ, Melkar M, Heberlein JVR, McMurry PH, Girshick SL (1997) Nanostruct Mater 9:129–132CrossRefGoogle Scholar
  11. 11.
    Cho CH, Park SH, Choi YW, Kim BG (2007) Surf Coat Technol 201:4847–4849Google Scholar
  12. 12.
    Swihart MT (2003) Curr Opin Colloid Interface Sci 8:127–133CrossRefGoogle Scholar
  13. 13.
    Ostrikov K, Murphy AB, (2007) J Phys D Appl Phys 8:2223–2241CrossRefADSGoogle Scholar
  14. 14.
    Haidar J (1999) J Appl Phys 84:3518CrossRefADSGoogle Scholar
  15. 15.
    Haidar J (1999) J Appl Phys 85:3448CrossRefADSGoogle Scholar
  16. 16.
    Deegan C, Chapman, Pitkethly M (2003) High Temp Mater Process 7:261–266. US patent 7,022,155Google Scholar
  17. 17.
    Tanaka T, Lowke JJ (2007) J Phys D Appl Phys 40:R1–R23CrossRefADSGoogle Scholar
  18. 18.
    Girshick SL, Chiu C-P, McMurry PH (1988) Plasma Chem Plasma Process 8:145CrossRefGoogle Scholar
  19. 19.
    Girshick SL, Chiu C-P (1990) J Chem Phys 93:1273CrossRefADSGoogle Scholar
  20. 20.
    Murphy AB (2004) J Phys D Appl Phys 37:2841–2847CrossRefADSGoogle Scholar
  21. 21.
    Haidar J (2001) Proceedings of the 15th International Symposium. Plasma Chemistry, Orleans 8:3269Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.CSIRO Materials Science and EngineeringLindfieldAustralia

Personalised recommendations