Plasma Chemistry and Plasma Processing

, Volume 29, Issue 3, pp 173–195 | Cite as

Oxidation of Acetylene in Atmospheric Pressure Pulsed Corona Discharge Cell Working in the Nanosecond Regime

  • M. Redolfi
  • N. Aggadi
  • X. Duten
  • S. Touchard
  • S. Pasquiers
  • K. Hassouni
Original Paper

Abstract

Combined experimental and modeling studies of acetylene oxidation in pulsed corona discharges working in the nanosecond regime are presented. The corona cell was characterized in term of power deposition to provide input data for the model. The concentrations of ozone, CO, CO2 and residual acetylene were systematically measured for model validation purposes. The model used allows describing the detailed chemistry in the discharge and the mass transfer between the microdischarges and the discharge free regions in the corona cell. Results showed that the model allows a satisfactory prediction of the acetylene residual fraction, CO and CO2 yields and O3 concentration for a wide range of conditions. They enabled a precise identification of the product distribution and confirmed the central role of O-atom in the oxidation process. They also revealed that ketene, H2CCO, plays an important role in the oxidation mechanism and allowed drawing some conclusions on the optimization of the oxidation process.

Keywords

Corona discharge Acetylene Kinetic Oxygen atom Ozone 

References

  1. 1.
    Mok YS, Nam CM, Cho MH, Nam I-S (2002) IEEE Trans Plasma Sci 30:408CrossRefADSGoogle Scholar
  2. 2.
    Rosocha LA, Korzekwa A (1999) J Adv Oxid Technol 4:312Google Scholar
  3. 3.
    Kim H-H (2004) Plasma Process Polym 1:91CrossRefGoogle Scholar
  4. 4.
    Yan K, van Heesch EJM, Pemen AJM, Huijbrechts PAHJ (2001) Plasma Chem Plasma Process 21:107CrossRefGoogle Scholar
  5. 5.
    Vercammen K, Berezin A (1997) J Adv Oxid Technol 2:312Google Scholar
  6. 6.
    Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher JR (2008) Plasma Chem Plasma Process 28:429CrossRefGoogle Scholar
  7. 7.
    Guaitella O, Thevenet F, Puzenat E, Guillard C, Rousseau A (2008) Appl Catal B Environ 80:296CrossRefGoogle Scholar
  8. 8.
    Kim H-H, Ogata A, Futamura S (2005) J Phys D Appl Phys 38:1292CrossRefADSGoogle Scholar
  9. 9.
    Holzer F, Kopinke FD, Roland U (2005) Plasma Chem Plasma Process 25:595CrossRefGoogle Scholar
  10. 10.
    Aggadi N, Duten X, Marteau P, Rédolfi M, Hassouni K (2006) Eur Phys J Appl Phys 36:165CrossRefADSGoogle Scholar
  11. 11.
    McAdams R (2001) J Phys D Appl Phys 34:2810CrossRefADSGoogle Scholar
  12. 12.
    Ono R, Oda T (2003) J Appl Phys 93:5876CrossRefADSGoogle Scholar
  13. 13.
    Eichwald O, Guntoro NA, Yousfi M, Benhenni M (2002) J Phys D Appl Phys 35:439CrossRefADSGoogle Scholar
  14. 14.
    Bastien F, Marode E (1979) J Phys D Appl Phys 2:249CrossRefADSGoogle Scholar
  15. 15.
    Van Veldhuizen EM, Rutgers WR (2003) J Phys D Appl Phys 21:2692CrossRefADSGoogle Scholar
  16. 16.
    Wang H, Frenklach M (1997) Combust Flame 110:173CrossRefGoogle Scholar
  17. 17.
    Calcote HF (1981) Combust Flame 42:215CrossRefGoogle Scholar
  18. 18.
    Wang H, Frenklach M (1993) J Phys Chem 97:3867CrossRefGoogle Scholar
  19. 19.
    Masschelein WJ (1998) Ozone Sci Eng 20:489CrossRefGoogle Scholar
  20. 20.
    Paraisse C, Brion J, Malicet J (1996) Chem Phys Lett 31–36:328Google Scholar
  21. 21.
    Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207CrossRefADSGoogle Scholar
  22. 22.
    Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma kinetics in atmospheric gases. Springer-Verlag, BerlinGoogle Scholar
  23. 23.
    Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2003) Atmos Chem Phys Discuss 3:6179ADSCrossRefGoogle Scholar
  24. 24.
    Herron JT, Green DS (2001) Plasma Chem Plasma Process 21:459CrossRefGoogle Scholar
  25. 25.
    Sieck LW, Heron JT, Green DS (2000) Plasma Chem Plasma Process 20:235CrossRefGoogle Scholar
  26. 26.
    Alvarez RAM, Murray CB (1994) J Phys Chem 98:174CrossRefGoogle Scholar
  27. 27.
    Tsang W, Hampson RF (1986) J Phys Chem Ref Data 15:1087ADSGoogle Scholar
  28. 28.
    Cvetanovic RJ (1987) J Phys Chem Ref Data 16:261ADSGoogle Scholar
  29. 29.
    Avery HE, Cvetanovic RJ (1968) J Chem Phys 48:380CrossRefADSGoogle Scholar
  30. 30.
    Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (1997) J Phys Chem Ref Data 26:521ADSGoogle Scholar
  31. 31.
    Breen JE, Glass GP (1970) Int J Chem Kinet 3:145CrossRefGoogle Scholar
  32. 32.
    Gaedtke H, Glaenzer K, Hippler H, Luther K, Troe JK (1973) Int Symp Combust 14:295CrossRefGoogle Scholar
  33. 33.
    Fujimoto GT, Umstead ME, Lin MC (1982) Chem Phys 65:197CrossRefGoogle Scholar
  34. 34.
    Frank P, Bhaskaran KA, Just T (1988) Int Symp Combust 21:233–248Google Scholar
  35. 35.
    Chen IC, Moore CB (1990) J Phys Chem 94:263–269CrossRefGoogle Scholar
  36. 36.
    Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just T, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1992) J Phys Chem Ref Data 21(3):411–734ADSCrossRefGoogle Scholar
  37. 37.
    Dombrowsky CW, Wagner HGg (1992) Ber Bunsenges Phys Chem 96:1048Google Scholar
  38. 38.
    Dorai R (2000) Modeling of plasma remediation of NOx using global kinetic models accounting for hydrocarbons. University of Illinois, Urbana-ChampaignGoogle Scholar
  39. 39.
    Dorai R (2002) Modeling of atmospheric pressure plasma processing of gases and surfaces. University of Illinois, Urbana-ChampaignGoogle Scholar
  40. 40.
    Osborn DL (2003) J Phys Chem A 107:3728CrossRefGoogle Scholar
  41. 41.
    Gentile AC (1995) Kinetic processes and plasma remediation of toxic gases. University of Illinois, Urbana-ChampaignGoogle Scholar
  42. 42.
    Chemical Kinetics Database on the Web (2009) http://kinetics.nist.gov/kinetics/. Accessed 1 July 2007
  43. 43.
    NIST (2009) NIST chemistry webbook. http://webbook.nist.gov/chemistry/. Accessed 1 May 2007
  44. 44.
    EPA (2009) Environmental protection agency. www.epa.gov. Accessed 1 June 2007

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Redolfi
    • 1
  • N. Aggadi
    • 1
  • X. Duten
    • 1
  • S. Touchard
    • 1
  • S. Pasquiers
    • 2
  • K. Hassouni
    • 1
  1. 1.LIMHP, CNRS-UPR1311Université Paris 13VilletaneuseFrance
  2. 2.LPGP, CNRS-UMR 8678Université Paris 11OrsayFrance

Personalised recommendations