Functionalizing Single-Wall Carbon Nanotubes in Hollow Cathode Glow Discharges

  • M. Bystrzejewski
  • M. H. Rümmeli
  • T. Gemming
  • T. Pichler
  • A. Huczko
  • H. Lange
Original Paper


A hollow cathode glow discharge was used to functionalize single-wall carbon nanotubes. This low temperature, solvent free, facile and fast process may be used to efficiently attach various functional groups (COOH, OH, CH, NH2, NO2 and NO) to the open ends and sidewalls of carbon nanotubes. The presented technique yields a broader set of functional groups being attached to the tubes as compared to other discharge routes. A rich functionalized surface provides an attractive scaffold for the further coupling of complex molecules, e.g., enzymes, antibodies. In situ optical emission spectroscopy investigations provided detailed information of the dynamic processes within the plasma itself. The findings show a gas temperature of 480 K and suggest the functionalization occurs through radical addition channels that are assisted by N2 + radical ion collisions viz. N2 + ion radical bombardment breaks C–C bonds on SWNTs surface opening a path for subsequent addition and quenching for other radical species.


Glow discharge Hollow cathode Carbon nanotubes Functionalization 



This work was supported by the Ministry of Science and Education through the Department of Chemistry, Warsaw University under Grant No. N204 096 31/2160. M. B. thanks the Foundation for Polish Science (FNP) and DFG RU 1540/1-1 for financial support.


  1. 1.
    Avouris P (2002) Acc Chem Res 35:1026–1034CrossRefGoogle Scholar
  2. 2.
    Zhou O, Shimoda H, Gao B, Oh S, Fleming L, Yue G (2002) Acc Chem Res 35:1045–1083CrossRefGoogle Scholar
  3. 3.
    Prato M, Kostarelos K, Bianco A (2008) Acc Chem Res 41:60–68CrossRefGoogle Scholar
  4. 4.
    Guldi DM, Rahman GMA, Sgobba V, Ehli C (2006) Chem Soc Rev 5:471–487CrossRefGoogle Scholar
  5. 5.
    So HM, Kim BK, Park DW, Kim BS, Kim JJ, Kong KJ, Chang H, Lee JO (2007) J Am Chem Soc 129:4866–4867CrossRefGoogle Scholar
  6. 6.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136CrossRefGoogle Scholar
  7. 7.
    Britz DA, Khlobystov AN (2006) Chem Soc Rev 7:637–659CrossRefGoogle Scholar
  8. 8.
    Sakellariou G, Ji H, Mays JW, Hadjichristidis N, Baskaran D (2007) Chem Mater 19:6370–6372CrossRefGoogle Scholar
  9. 9.
    Umek P, Seo JW, Hernadi K, Mrzel A, Pechy P, Mihailovic DD, Forro F (2003) Chem Mater 15:4751–4755CrossRefGoogle Scholar
  10. 10.
    Basiuk VA (2004) J Phys Chem B 108:19990–19994CrossRefGoogle Scholar
  11. 11.
    Basiuk VA (2002) Nano Lett 2:835–839CrossRefADSGoogle Scholar
  12. 12.
    Basiuk VA, Basiuk EV, Saniger-Blesa JM (2001) Nano Lett 1:657–661CrossRefADSGoogle Scholar
  13. 13.
    Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) J Phys Chem B 107:3712–3718CrossRefGoogle Scholar
  14. 14.
    Huang W, Taylor S, Fu K, Lin F, Zhang D, Hanks TW, Rao AM, Sun YP (2002) Nano Lett 2:311–314CrossRefADSGoogle Scholar
  15. 15.
    Ramanathan T, Fisher FT, Ruoff RS, Brinson LC (2005) Chem Mater 17:1290–1295CrossRefGoogle Scholar
  16. 16.
    Chen RJ, Zhang Y, Wang D, Dai H (2001) J Am Chem Soc 123:3838–3839CrossRefGoogle Scholar
  17. 17.
    Khare BN, Meyyappan M, Cassell AM, Nguyen CV, Han J (2002) Nano Lett 2:73–77CrossRefADSGoogle Scholar
  18. 18.
    Khare BN, Wilhite P, Tran B, Teixera E, Fresquez F, Mvondo DN, Bauschlicher C, Meyyappan M (2005) J Phys Chem B 109:23466–23472CrossRefGoogle Scholar
  19. 19.
    Khare BN, Wilhite P, Quinn RC, Chen B, Schingler RH, Tran B, Imanaka H, So CR, Bauschlicher W, Meyyappan M (2004) J Phys Chem B 108:8166–8172CrossRefGoogle Scholar
  20. 20.
    Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) Carbon 43:2951–2959CrossRefGoogle Scholar
  21. 21.
    Yan YH, Chan-Park MB, Zhou Q, Li CM, Yue CY (2005) Appl Phys Lett 87:213101CrossRefADSGoogle Scholar
  22. 22.
    Ruelle B, Peeterbroeck S, Gouttebaron R, Godfroid T, Monteverde F, Dauchot JP, Alexandre M, Hecq M, Dubois P (2007) J Mater Chem 17:157–159CrossRefGoogle Scholar
  23. 23.
    Yu K, Zhu Z, Xu M, Li Q, Lu W, Chen Q (2004) Surf Coat Technol 179:63–69CrossRefGoogle Scholar
  24. 24.
    Caroli S (1983) Prog Anal At Spectrosc 6:253–292Google Scholar
  25. 25.
    Ganeyev AA, Sholupov SE (1998) Spectrochim Acta B 53:471–486CrossRefADSGoogle Scholar
  26. 26.
    Balaceanu M, Grigore E, Truica-Marasescu F, Pantelica D, Negoita F, Pavelescu G, Ionescu F (2000) Nucl Instrum Methods Phys Res Sect B 161–163:1002–1006CrossRefGoogle Scholar
  27. 27.
    Buuron A, Koch F, Nothe M, Bolt H (1999) Surf Coat Technol 116–119:755–765CrossRefGoogle Scholar
  28. 28.
    Huczko A, Lange H, Sioda M, Zhu YQ, Hsu WK, Kroto HW, Walton DRM (2002) J Phys Chem B 106:1534–1536CrossRefGoogle Scholar
  29. 29.
    Lin CC, Leu IC, Yen JH, Hon MH (2006) Nanotechnology 17:4352CrossRefADSGoogle Scholar
  30. 30.
    Rümmeli MH, Kramberger C, Löffler M, Jost O, Bystrzejewski M, Grüneis A, Gemming T, Pompe W, Büchner B, Pichler T (2007) J Phys Chem B 111:8234–8241CrossRefGoogle Scholar
  31. 31.
    Schönfelder R, Rümmeli MH, Gruner W, Löffler M, Acker J, Hoffmann V, Gemming T, Büchner B, Pichler T (2007) Nanotechnology 18:375601CrossRefGoogle Scholar
  32. 32.
    Ahmad S, Akhtar MN (2001) Appl Phys Lett 78:1499–1501CrossRefADSGoogle Scholar
  33. 33.
    Sankaran RM, Giapis KP (2002) J Appl Phys 92:2406–2411CrossRefADSGoogle Scholar
  34. 34.
    Mendez JM, Muhl S, Contreras-Puente G, Aguilar-Hernandez J (1992) Thin Sol Films 220:125–131CrossRefADSGoogle Scholar
  35. 35.
    Bystrzejewski M, Schönfelder R, Cuniberti G, Lange H, Huczko A, Gemming T, Pichler T, Büchner B, Rümmeli MH (2008) Chem Mater 20:6566–6568CrossRefGoogle Scholar
  36. 36.
    Kuo HF, Lien DH, Hsu WK, Tai NH, Chang SC (2007) J Mater Chem 17:3581–3584CrossRefGoogle Scholar
  37. 37.
    Stevens JL, Huang AY, Peng H, Chiang IW, Khabashesku VN, Margrave JL (2003) Nano Lett 3:331–336CrossRefADSGoogle Scholar
  38. 38.
    Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu Z, Hauge RH, Billups WE (2004) Nano Lett 4:1257–1260CrossRefADSGoogle Scholar
  39. 39.
    Dresselhaus MS, Eklund P (2000) Adv Phys 49:705–814CrossRefADSGoogle Scholar
  40. 40.
    Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC (2005) J Am Chem Soc 127:15437–15445CrossRefGoogle Scholar
  41. 41.
    Fantini C, Jorio A, Souza M, Dresselhaus MS, Pimenta MA (2004) Phys Rev Lett 93:147406CrossRefADSGoogle Scholar
  42. 42.
    Sun J, Wang Y, Gao L, Liu Y, Kajiura H, Li Y, Noda K (2008) J Phys Chem C 112:1789–1794CrossRefGoogle Scholar
  43. 43.
    Bantignies JL, Sauvajol JL, Rahmani A, Flahaut E (2006) Phys Rev B 74:195425CrossRefADSGoogle Scholar
  44. 44.
    Kim UJ, Liu XM, Furtado CA, Chen G, Saito R, Jiang J, Dresselhaus MS, Eklund PC (2005) Phys Rev Lett 95:157402CrossRefADSGoogle Scholar
  45. 45.
    Centrone A, Brambilla L, Renourand T, Gherghel L, Mathis C, Mullen K, Zerbi G (2005) Carbon 43:1593–1609CrossRefGoogle Scholar
  46. 46.
    Yasui K, Arayama T, Okutani S, Akahane T (2003) Appl Surf Sci 212–213:619–624CrossRefGoogle Scholar
  47. 47.
    Lange H, Huczko A (2001) Chem Phys Lett 340:1–6CrossRefADSGoogle Scholar
  48. 48.
    Chen ZX, Wang GW (2005) J Org Chem 70:2380–2383CrossRefGoogle Scholar
  49. 49.
    Ying Y, Saini RK, Liang F, Sadana AK, Billups WE (2003) Org Lett 5:1471–1473CrossRefGoogle Scholar
  50. 50.
    Ni B, Sinnott SB (2000) Phys Rev B 61:R16343CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Bystrzejewski
    • 1
  • M. H. Rümmeli
    • 2
  • T. Gemming
    • 2
  • T. Pichler
    • 3
  • A. Huczko
    • 1
  • H. Lange
    • 1
  1. 1.Department of ChemistryWarsaw UniversityWarsawPoland
  2. 2.IFW DresdenDresdenGermany
  3. 3.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations