Plasma Chemistry and Plasma Processing

, Volume 27, Issue 5, pp 599–608 | Cite as

Influence of Gas Entry Point on Plasma Chemistry, Ion Energy and Deposited Alumina Thin Films in Filtered Cathodic Arc

  • J. Rosen
  • P. O. Å. Persson
  • M. Ionescu
  • J. Pigott
  • D. R. McKenzie
  • M. M. M. Bilek
Original Paper


The effect of gas entry point on the plasma chemistry, ion energy distributions and resulting alumina thin film growth have been investigated for a d.c. cathodic arc with an aluminum cathode operated in an oxygen/argon atmosphere. Ions of aluminum, oxygen and argon, as well as ions originating from the residual gas are investigated, and measurements for gas entry at both the cathode and close to the substrate are compared. The latter was shown to result in higher ion flux, lower levels of ionised residual gas, and lower ion energies, as compared to gas inlet at the cathode. These plasma conditions that apply when gas entry at the substrate is used result in a higher film deposition rate, less residual gas incorporation, and more stoichiometric alumina films. The results show that the choice of gas entry point is a crucial parameter in thin film growth using reactive PVD processes such as reactive cathodic arc deposition.


Cathodic arc Gas entry point Ion energy Alumina 


  1. 1.
    Schneider JM, Sproul WD, Voevodin AA, Matthews A (1997) J Vac Sci Technol A 15:1084CrossRefADSGoogle Scholar
  2. 2.
    Serra E, Benamati G, Ogorodnikova OV (1998) J Nucl Mater 255:105CrossRefADSGoogle Scholar
  3. 3.
    Pflitsch C, Muhsin A, Bergmann U, Atakan B (2006) Surf Coat Technol 201:73CrossRefGoogle Scholar
  4. 4.
    Sosniak J (1966) J Vac Sci Technol 4:87CrossRefADSGoogle Scholar
  5. 5.
    Schneider JM, Larsson K, Lu J, Olsson E, Hjörvarsson B (2002) Appl Phys Lett 80:1144CrossRefADSGoogle Scholar
  6. 6.
    Anders A, Anders S, Jüttner B, Bötticher W, Lück H, Schröder G (1992) IEEE Trans Plasma Sci 20:466CrossRefADSGoogle Scholar
  7. 7.
    Brown IG (1994) Rev Sci Instrum 65:3061CrossRefADSGoogle Scholar
  8. 8.
    Greene JE, Barnett SA, Sundgren J-E, Rocket A (1989) In: Itoh (ed) Ion beam assisted thin film growth, Chapter 5. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Rosen J, Widenkvist E, Larsson K, Kreissig U, Mráz S, Martinez C, Music D, Schneider JM (2006) Appl Phys Lett 88:191905CrossRefADSGoogle Scholar
  10. 10.
    Rosen J, Larsson K, Schneider JM (2005) J Phys Condens Matter 17:L137CrossRefADSGoogle Scholar
  11. 11.
    Rosen J, Anders A, Mraz S, Schneider JM (2005) J Appl Phys 97:103306CrossRefADSGoogle Scholar
  12. 12.
    Schneider JM, Anders A, Brown IG, Hjörvarsson B, Hultman L (1999) Appl Phys Lett 75:612CrossRefADSGoogle Scholar
  13. 13.
    Spädtke P, Emig H, Wolf BH, Oks E (1994) Rev Sci Instrum 65:3113CrossRefADSGoogle Scholar
  14. 14.
    Rosen J, Anders A, Hultman L, Schneider JM (2003) J Appl Phys 94:1414CrossRefADSGoogle Scholar
  15. 15.
    Ivanov I, Ljungcrantz H, Håkansson G, Petrov I, Sundgren J-E (1997) Surf Coat Technol 92:150CrossRefGoogle Scholar
  16. 16.
    Yang L, Zou J, Cheng Z (1997) IEEE trans Plasma Sci 25:700CrossRefADSGoogle Scholar
  17. 17.
    Bilek MMM, Martin PJ, McKenzie DR (1998) J Appl Phys 83:2965CrossRefADSGoogle Scholar
  18. 18.
    Tarrant RN, Bilek MMM, Oates TWH, Pigott J, McKenzie DR (2002) Surf Coat Technol 156:110CrossRefGoogle Scholar
  19. 19.
    Chhowalla M (2003) Appl Phys Lett 83:1542CrossRefADSGoogle Scholar
  20. 20.
    Rosen J, Anders A, Mraz S, Atiser A, Schneider JM (2006) J Appl Phys 99:123303CrossRefADSGoogle Scholar
  21. 21.
    Strauss GN and Pulker HK (2002) Proceedings of the Fourth International Conference on Coatings on Glass. Braunschweig, GermanyGoogle Scholar
  22. 22.
    Rosen J, Mráz S, Kreissig U, Music D, Schneider JM (2005) Plasma Chem Plasma Proc 25:303CrossRefGoogle Scholar
  23. 23.
    Randhawa H (1989) J Vac Sci Technol A 7:2346CrossRefADSGoogle Scholar
  24. 24.
    Bolt H, Koch F, Rodet JL, Karpov D, Menzel S (1999) Surf Coat Technol 116:956CrossRefGoogle Scholar
  25. 25.
    Zhao ZW, Tay BK, Lau SP, Xiao CY (2003) J Vac Sci Technol A 21:906CrossRefADSGoogle Scholar
  26. 26.
    Li Q, Yu Y-H, Bhatia CS, Marks LD, Lee SC, Chung YW (2000) J Vac Sci Technol A 18:2333CrossRefADSGoogle Scholar
  27. 27.
    Brill R, Koch F, Mazurelle J, Levchuk D, Balden M, Yamada-Takamura Y, Maier H, Bolt H (2003) Surf Coat Technol 174–175:606CrossRefGoogle Scholar
  28. 28.
    Kyrylov O, Kurapov D, Schneider JM (2005) Appl Phys A 80:1657CrossRefADSGoogle Scholar
  29. 29.
    McCaffrey JP (1991) Ultramicroscopy 38:149CrossRefGoogle Scholar
  30. 30.
    Rosen J, Anders A, Hultman L, Schneider JM (2004) J Appl Phys 96:4793CrossRefADSGoogle Scholar
  31. 31.
    Lide DR (ed) (2000) Handbook of chemistry and physics, 81st edn. CRC, Boca Raton, FLGoogle Scholar
  32. 32.
    Honkala K, Laasonen K (2000) Phys Rev Lett 84:705CrossRefADSGoogle Scholar
  33. 33.
    Boxman RL, Sanders D, Martin PJ (1995) Handbook of vacuum arc science and technology. William Andrew Publishing, NoyesGoogle Scholar
  34. 34.
    Schnider JM, Anders A, Hjörvarsson B, Hultman L (2000) Appl Phys Lett 76:1531CrossRefADSGoogle Scholar
  35. 35.
    Schneider JM, Hjörvarsson B, Wang X, Hultman L (1999) Appl Phys Lett 75:3476CrossRefADSGoogle Scholar
  36. 36.
    Smirnov BM (2000) Phys Scr 61:595CrossRefADSGoogle Scholar
  37. 37.
    Chapman B (1980) Glow discharge processes. Wiley, New YorkGoogle Scholar
  38. 38.
    Phelps AV (1991) J Phys Chem Ref Data 20:557ADSCrossRefGoogle Scholar
  39. 39.
    Liberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New YorkGoogle Scholar
  40. 40.
    Houska J, Warschkow O, Bilek MMM, McKenzie DR, Vlcek J, Potocky S (2006) J Phys Condens Matter 18:2337CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Rosen
    • 1
  • P. O. Å. Persson
    • 1
  • M. Ionescu
    • 2
  • J. Pigott
    • 1
  • D. R. McKenzie
    • 1
  • M. M. M. Bilek
    • 1
  1. 1.School of PhysicsThe University of SydneySydneyAustralia
  2. 2.Australian Nuclear Science and Technology OrganisationLucas HeightsAustralia

Personalised recommendations