Plasma Chemistry and Plasma Processing

, Volume 28, Issue 2, pp 233–248 | Cite as

Controlled Synthesis of β-SiC Nanopowders with Variable Stoichiometry Using Inductively Coupled Plasma

  • Y. Leconte
  • M. Leparoux
  • X. Portier
  • N. Herlin-Boime
Original Paper


In the growing field of nanomaterials, SiC nanoparticles arouse interest for numerous applications. The inductively coupled plasma (ICP) technique allows obtaining large amount of SiC nanopowders from cheap coarse SiC powders. In this paper, the effects on the SiC structure of the process pressure, the plasma gas composition, and the precursor nature are addressed. The powders were characterized by X-ray diffraction (XRD), Raman and fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and high resolution electron microscopy (HREM), chemical analyses, BET and photon correlation spectroscopy (PCS) measurements. Whatever the precursor (α- or β-SiC), the nanoparticles were crystallised in the cubic β-SiC phase, with average sizes in the 20–40 nm range. Few residual grains of precursor were observed, and the decarburization due to the reductive Ar–H2 plasma lead to the appearance of Si nanograins. The stoichiometry of the final product was found to be controllable by the process pressure and the addition of methane.


Powder processing Nanoparticles Silicon carbide 


  1. 1.
    Vassen R, Stöver D (1997) Phil Mag B 76:585CrossRefGoogle Scholar
  2. 2.
    Vassen R, Kaiser A, Stöver D (1996) J Nucl Mater 233–237:708CrossRefGoogle Scholar
  3. 3.
    Donato A, Borsella E, Botti S, Martelli S, Nannetti CA, Mancini MR, Morjan IJ (1996) Nucl Mater 233–237:814CrossRefGoogle Scholar
  4. 4.
    Chae KW, Niihara K, Kim DY (1995) J Mat Sci Lett 14:1332CrossRefGoogle Scholar
  5. 5.
    Endo H, Ueki M, Kubo HJ (1991) Mat Sci 26:3769CrossRefADSGoogle Scholar
  6. 6.
    Vassen R, Stöver D (2001) Mat Sci Eng A 301:59CrossRefGoogle Scholar
  7. 7.
    Fu Z, Ning J, Yang B, Wu W, Pan H, Xu P (2003) Mater Lett 57:1910CrossRefGoogle Scholar
  8. 8.
    Ledoux MJ, Pham-Huu C (2001) CaTTech 5:226CrossRefGoogle Scholar
  9. 9.
    Guichelaar PJ (1997) In: Carbide, nitride and boride materials synthesis and processing. Chapman and HallGoogle Scholar
  10. 10.
    Setiowati U, Kimura SJ (1997) Am Ceram Soc 80:757CrossRefGoogle Scholar
  11. 11.
    Hatakeyama F, Kanzaki SJ (1990) Am Ceram Soc 73:2107CrossRefGoogle Scholar
  12. 12.
    Seong IS, Kim CH (1993) J Mater Sci 28:3277CrossRefADSGoogle Scholar
  13. 13.
    Klein S, Winterer M, Hahn H (1998) Chem Vapor Depos 4:143CrossRefGoogle Scholar
  14. 14.
    Chen LD, Goto T, Hirai TJ (1989) Mater Sci 24:3824CrossRefADSGoogle Scholar
  15. 15.
    Yamada O, Miyamoto Y, Koizumi MJ (1986) Mater Res 1:275CrossRefADSGoogle Scholar
  16. 16.
    Satapathy LN, Ramesh PD, Agrawal D, Roy R (2005) Mater Res Bull 40:1871CrossRefGoogle Scholar
  17. 17.
    Suyama Y, Marra RM, Haggerty JS, Bowen HK (1985) Am Ceram Soc Bull 64:1356Google Scholar
  18. 18.
    Cauchetier M, Croix O, Luce M (1998) Adv Ceram Mat 3:548Google Scholar
  19. 19.
    Ando Y, Ohkohchi M, Uyeda R (1980) Jpn J Appl Phys 19:693CrossRefADSGoogle Scholar
  20. 20.
    Inoue Y, Nariki Y, Tanaka KJ (1989) Mater Sci 24:3819CrossRefADSGoogle Scholar
  21. 21.
    Hollabaugh CM, Hull DE, Newkirk LR, Petrovic JJ (1983) J Mater Sci 18:3190CrossRefADSGoogle Scholar
  22. 22.
    Kameyama T, Sakanaka K, Motoe A, Tsunoda T, Nakanaga T, Wakayama NI, Takeo H, Fukuda K (1990) J Mater Sci 25:1058Google Scholar
  23. 23.
    Guo JY, Gitzhofer F, Boulos MI (1995) J Mater Sci 30:5589CrossRefADSGoogle Scholar
  24. 24.
    Kong P, Pfender E (1987) Langmuir 3:259CrossRefGoogle Scholar
  25. 25.
    Lee HJ, Eguchi K, Yoshida T (1990) J Am Ceram Soc 73:3356CrossRefGoogle Scholar
  26. 26.
    Leparoux M, Schreuders C, Shin JW, Siegmann S (2005) Adv Eng Mater 7:349CrossRefGoogle Scholar
  27. 27.
    Shin JW, Miyazoe H, Leparoux M, Siegmann S, Dorier JL, Hollenstein C (2006) Plasma Sources Sci Technol 15:441CrossRefADSGoogle Scholar
  28. 28.
    Nakashima S, Harima H (1997) Phys Stat Sol A 162:39CrossRefADSGoogle Scholar
  29. 29.
    Burton JC, Sun L, Long FH, Feng ZC, Ferguson T (1999) Phys Rev B 59:7282CrossRefADSGoogle Scholar
  30. 30.
    Papoular R, Cauchetier M, Begin S, Le Caer G (1998) Astron Astrophys 329:1035ADSGoogle Scholar
  31. 31.
    Boulos MH, Fauchais P, Pfender E (1994) In: Thermal plasmas—fundamentals and applications. Plenum Press editorsGoogle Scholar
  32. 32.
    Colder H, Rizk R, Morales M, Marie P, Vicens J, Vickridge I (2005) J Appl Phys 98:024313CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Y. Leconte
    • 1
    • 2
  • M. Leparoux
    • 2
  • X. Portier
    • 3
  • N. Herlin-Boime
    • 1
  1. 1.Laboratoire Francis Perrin(CEA-CNRS URA 2453), Service des Photons, Atomes et Molécules, DSM/DRECAM, CEA-SaclayGif sur Yvette CedexFrance
  2. 2.Laboratory for Materials TechnologyEmpa-Materials Science and TechnologyThunSwitzerland
  3. 3.SIFCOM-ENSICAENCaen cedexFrance

Personalised recommendations