Plasma Chemistry and Plasma Processing

, Volume 27, Issue 4, pp 414–445 | Cite as

Effect Of Propene, n-Decane, and Toluene Plasma Kinetics on NO Conversion in Homogeneous Oxygen-Rich Dry Mixtures at Ambient Temperature

  • G. Lombardi
  • N. Blin-Simiand
  • F. Jorand
  • L. Magne
  • S. Pasquiers
  • C. Postel
  • J. -R. Vacher
Original Paper

Abstract

A photo-triggered discharge is used to study the influence of three hydrocarbons (HCs), propene (C3H6), n-decane (C10H22), and toluene (C6H5CH3) on NO conversion in N2/O2/NO/HC mixtures, with 18.5% O2 concentration, 700 ppm of NO, and an hydrocarbon concentration ranging between 190 ppm and 2,700 ppm. The electrical system generates a transient homogeneous plasma, working under 400 mbar total pressure, with a 50 ns short current pulse at a repetition frequency up to a few Hz. The NO concentration at the exit of the reactor is quantified using absolute FTIR spectroscopy measurements, as a function of the specific deposited energy in the discharge and the mixture composition. Owing to the plasma homogeneity, the experimental results can be compared to predictions of a self-consistent 0-D discharge and kinetic model based on available data in the literature about reactions and their rate constants. It is shown that the addition of either propene (as for DBD or corona discharges) or n-decane to N2/O2/NO leads to an improvement of the NO removal as compared to the mixture without hydrocarbon molecules. The adopted kinetic schemes explain this effect for the two mixture types. On the other hand, both the experiments and model predictions emphasize that the addition of toluene does not lead to the improvement of NO conversion. Moreover, compounds that are useful for NO x reduction catalysis, such as aldehydes, are less produced in the mixture with toluene.

Keywords

Nitrogen oxide Propene n-decane Toluene Photo-triggered discharge Atmospheric pressure non-thermal plasmas Plasma kinetic Exhaust gas treatment Plasma modeling 

Notes

Acknowledgments

This work was performed with financial support of GIE: PSA Peugeot-Citröen / Renault SA.

References

  1. 1.
    Suhr H, Weddigen G (1990) Combust Sci Tech 72:101CrossRefGoogle Scholar
  2. 2.
    Penetrante B, Brusasco R, Merritt B, Vogtlin G (1999) Pure Appl Chem 71:1829Google Scholar
  3. 3.
    Bröer S, Hammer Th (2000) Appl Cat B 28:101CrossRefGoogle Scholar
  4. 4.
    Gorce O, Jurado H, Thomas C, Djega-Mariadassou G, Khacef A, Cormier J-M, Pouvesle J-M, Blanchard G, Calvo S, Lendresse Y (2001) SAE Paper 2001-01-3508Google Scholar
  5. 5.
    Kim H-H, Takashima K, Katsura S, Mizuno A (2001) J Phys D: Appl Phys 34:604CrossRefADSGoogle Scholar
  6. 6.
    Miessner H, Francke K-P, Rudolph R (2002) Appl Cat B 36:53CrossRefGoogle Scholar
  7. 7.
    Yoon S, Panov A, Tonkyn R, Ebeling A, Barlow S, Balmer M (2002) Catal Today 72:243CrossRefGoogle Scholar
  8. 8.
    Rappé K, Hoard J, Aardahl C, Park P, Peden C, Tran D (2004) Catal Today 89:143CrossRefGoogle Scholar
  9. 9.
    Lee Y-H, Chung J-W, Choi Y-R, Chung J-S, Cho M-H, Namkung W (2004) Plasma Chem Plasma Proc 24:137CrossRefGoogle Scholar
  10. 10.
    Hammer Th (2002) Plasma Sources Sci Technol 11:A196CrossRefADSGoogle Scholar
  11. 11.
    Gentile A, Kushner M (1996) Appl Phys Lett 68:2064CrossRefADSGoogle Scholar
  12. 12.
    Niessen W, Wolf O, Schruft R, Neiger M (1998) J Phys D: Appl Phys 31:542CrossRefADSGoogle Scholar
  13. 13.
    Sathiamoorthy G, Kalyana S, Finney W, Clark R, Locke B (1999) Ind Eng Chem Res 38:1844CrossRefGoogle Scholar
  14. 14.
    Orlandini I, Riedel U (2000) J Phys D: Appl Phys 33:2467CrossRefADSGoogle Scholar
  15. 15.
    Doraï R, Kushner MJ (2000) J Appl Phys 88:3739CrossRefADSGoogle Scholar
  16. 16.
    Kim H-H, Prieto G, Takashima K, Katsura S, Mizuno A (2002) J Electros 55:25CrossRefGoogle Scholar
  17. 17.
    Filimonova E, Kim Y, Hong S, Song Y-H (2002) J Phys D: Appl Phys 35:2795CrossRefADSGoogle Scholar
  18. 18.
    Khacef A, Cormier J-M, Pouvesle J-M (2002) J Phys D: Appl Phys 35:1491CrossRefADSGoogle Scholar
  19. 19.
    Shin H-H, Yoon W-S (2003) Plasma Chem Plasma Proc 23:681CrossRefGoogle Scholar
  20. 20.
    Chang M, Kushner M, Rood M (1992) Environ Sci Technol 26:777CrossRefGoogle Scholar
  21. 21.
    Gentile A, Kushner M (1995) J Appl Phys 78:2074CrossRefADSGoogle Scholar
  22. 22.
    Gal A, Kurahashi M, Kuzumoto M (1999) J Phys D: Appl Phys 32:1163CrossRefADSGoogle Scholar
  23. 23.
    McLarmon C, Mathur V (2000) Ind Eng Chem Res 39:2779CrossRefGoogle Scholar
  24. 24.
    Filimonova E, Amirov R, Kim H, Park I (2000) J Phys D: Appl Phys 33:1716CrossRefADSGoogle Scholar
  25. 25.
    Stefanovic I, Bibinov N, Deryugin A, Vinogradov I, Napartovich A, Wiesemann K (2001) Plasma Sour Sci Technol 10:406CrossRefADSGoogle Scholar
  26. 26.
    Herron JT (2001) Plasma Chem Plasma Proc 21:581CrossRefGoogle Scholar
  27. 27.
    Daou F, Vincent A, Amouroux J (2003) Plasma Chem Plasma Proc 23:309CrossRefGoogle Scholar
  28. 28.
    Doraï R, Kushner MJ (2003) J Phys D: Appl Phys 36:1075CrossRefADSGoogle Scholar
  29. 29.
    Martin A, Shawcross J, Whitehead J (2004) J Phys D: Appl Phys 37:42CrossRefADSGoogle Scholar
  30. 30.
    Khacef A, Cormier J-M, Pouvesle J-M (2005) J Adv Oxid Technol 8:150Google Scholar
  31. 31.
    Zhu A-M, Sun Q, Niu J-H, Xu Y, Song Z-M (2005) Plasma Chem Plasma Proce 25:371CrossRefGoogle Scholar
  32. 32.
    Masuda S (1988) Pure Appl Chem 60:727Google Scholar
  33. 33.
    Lowke J, Morrow R (1995) IEEE Trans Plasma Sci 23:661CrossRefADSGoogle Scholar
  34. 34.
    Puchkarev V, Gundersen M (1997) Appl Phys Lett 71:3364CrossRefADSGoogle Scholar
  35. 35.
    Eichwald O, Yousfi M, Hennad A, Benabdessadok M (1997) J Appl Phys 82:4781CrossRefADSGoogle Scholar
  36. 36.
    Tas M, van Hardeveld R, van Veldhuizen E (1997) Plasma Chem Plasma Proc 17:371CrossRefGoogle Scholar
  37. 37.
    Mok Y, Ham S, Nam I (1998) Plasma Chem Plasma Proc 18:535CrossRefGoogle Scholar
  38. 38.
    Mok Y, Ham S, Nam I (1998) IEEE Trans Plasma Sci 26:1566CrossRefADSGoogle Scholar
  39. 39.
    Namihira T, Tsukamoto S, Wang D, Katsuki S, Hackam R, Akiyama H, Uchida Y, KoikeM (2000) IEEE Trans Plasma Sci 28:434CrossRefADSGoogle Scholar
  40. 40.
    Kim D-J, Choi Y, Kim K-S (2001) Plasma Chem Plasma Proc 21:625CrossRefGoogle Scholar
  41. 41.
    Eichwald O, Guntoro N, Yousfi M, Benhenni M (2002) J Phys D: Appl Phys 35:439CrossRefADSGoogle Scholar
  42. 42.
    Onda K, Kusunoki H, Ito K, Ibaraki H, Araki T (2005) J Appl Phys 97:DOI 023301Google Scholar
  43. 43.
    Yan K, Hui H, Cui M, Miao J, Wu X, Bao C, Li R (1998) J Electros 44:17CrossRefGoogle Scholar
  44. 44.
    Kogelschatz U (2003) Plasma Chem Plasma Proc 23:1CrossRefGoogle Scholar
  45. 45.
    Rozoy M, Postel C, Puech V (1999) Plasma Source Sci Technol 8:337CrossRefADSGoogle Scholar
  46. 46.
    Pasquiers S, Postel C, Magne L, Puech V, Lombardi G (2004) J Adv Oxid Technol 7:108Google Scholar
  47. 47.
    Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C (2006) Proc of the ISNTPT-5, Oleron Island, France (06/2006)Google Scholar
  48. 48.
    Fresnet F, Baravian G, Magne L, Pasquiers S, Postel C, Puech V, Rousseau A (2000) Appl Phys Lett 77:4118CrossRefADSGoogle Scholar
  49. 49.
    Fresnet F, Baravian G, Magne L, Pasquiers S, Postel C, Puech V, Rousseau A (2002) Plasma Sour Sci Technol 11:152CrossRefADSGoogle Scholar
  50. 50.
    Magne L, Pasquiers S, Postel C (2004) Proc of the 9th Int Symp on High Pressure, Low Temp Plasma Chem (Hakone IX), Padou, Italy (08/2004)Google Scholar
  51. 51.
    Magne L, Pasquiers S, Edon V, Jorand S, Postel C, Amorim J (2005) J Phys D: Appl Phys 38:3446CrossRefADSGoogle Scholar
  52. 52.
    Magne L, Pasquiers S (2005) C R Physique 6:908CrossRefADSGoogle Scholar
  53. 53.
    Lacour B, Puech V, Pasquiers S (2003) Recent Res Devel Appl Phys 6:149Google Scholar
  54. 54.
    Sarroukh O, Jorand F, Magne L, Postel C, Pasquiers S (2006) Proc of the ISNTPT-5, Oleron Island, France (06/2006)Google Scholar
  55. 55.
    Sarroukh O, Jorand F, Magne L, Pasquiers S, Postel C (2006) Proc of the XVIth Int Conf Gas Discharges Appl Xi’an, China (09/2006)Google Scholar
  56. 56.
    Fresnet F, Pasquiers S, Postel C, Puech V (2002) J Phys D: Appl Phys 35:882CrossRefADSGoogle Scholar
  57. 57.
    Mallard W-G, Westley F, Herron J-T, Hampson R-F, Frizzell DH (1998) NIST Chemical kinetics database (version 2Q98)Google Scholar
  58. 58.
    Tsang W, Hampson R (1986) J Phys Chem Ref Data 15:1087ADSCrossRefGoogle Scholar
  59. 59.
    Tsang W (1987) J Phys Chem Ref Data 16:471ADSCrossRefGoogle Scholar
  60. 60.
    Herron J (1988) J Phys Chem Ref Data 17:967ADSGoogle Scholar
  61. 61.
    Atkinson R (1990) Atmos Environ 24A:1Google Scholar
  62. 62.
    Tsang W, Herron J (1991) J Phys Chem Ref Data 20:609ADSCrossRefGoogle Scholar
  63. 63.
    Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sour Sci Technol 1:207CrossRefADSGoogle Scholar
  64. 64.
    Anicich V (1993) J Phys Chem Ref Data 22:1469ADSCrossRefGoogle Scholar
  65. 65.
    Atkinson R (1997) J Phys Chem Ref Data 26:215ADSCrossRefGoogle Scholar
  66. 66.
    Atkinson R, Baulch D, Cox R, Hampson R, Kerr J, Rossi M, Troe J (1999) J Phys Chem Ref Data 28:191CrossRefADSGoogle Scholar
  67. 67.
    Atkinson R (2000) Atmos Environ 34:2063CrossRefGoogle Scholar
  68. 68.
    Dorai R (2000) Thesis, University of Illinois, Urbana-Champaign, USAGoogle Scholar
  69. 69.
    Master Chemical Mechanism, Leeds University, GB : http://mcm.leeds.ac.uk/MCM/
  70. 70.
    Vacher J-R, Jorand F, Blin-Simiand N, Pasquiers S (2007) Chem Phys Lett 434:188CrossRefADSGoogle Scholar
  71. 71.
    Kim H-H (2001) Plasma Process Polym 1:91, and references thereinGoogle Scholar
  72. 72.
    Fröchtenicht R (1995) J Chem Phys 102:4850CrossRefADSGoogle Scholar
  73. 73.
    Blin-Simiand N, Jorand F, Sahetchian K, Brun M, Kerhoas L, Malosse C, Einhorn J (2001) Comb Flame 126:1524CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. Lombardi
    • 1
    • 2
  • N. Blin-Simiand
    • 1
  • F. Jorand
    • 1
  • L. Magne
    • 1
  • S. Pasquiers
    • 1
  • C. Postel
    • 1
  • J. -R. Vacher
    • 1
  1. 1.Laboratoire de Physique des Gaz et des Plasmas, CNRS (UMR8578)Université Paris-SudOrsay cedexFrance
  2. 2.CNRS LIMHPUniversité ParisVilletaneuseFrance

Personalised recommendations