Thermodynamic and Transport Properties of Two-temperature Oxygen Plasmas

Original Paper


Thermodynamic and transport properties of two-temperature oxygen plasmas are presented. Variation of species densities, mass densities, specific heat, enthalpy, viscosity, thermal conductivity, collision frequency and electrical conductivity as a function of temperature, pressure and different degree of temperature non-equilibrium are computed. Reactional, electronic and heavy particle components of the total thermal conductivity are discussed. To meet practical needs of fluid-dynamic simulations, temperatures included in the computation range from 300 K to 45,000 K, the ratio of electron temperature (Te) to the heavy particle temperature (Th) ranges from 1 to 30 and the pressure ranges from 0.1 to 7 atmospheres. Results obtained for thermodynamic equilibrium (Te = Th) under atmospheric pressure are compared with published results obtained for similar conditions. Observed overall agreement is reasonable. Slight deviations in some properties may be attributed to the values used for collision integral data and for the two temperature formulations used. An approach for computing properties under chemical non-equilibrium and associated deviations from two-temperature results under similar conditions are discussed.


Non-equilibrium thermodynamic and transport properties oxygen plasmas 


  1. 1.
    Devoto RS (1967) Phys Fluids 10:354CrossRefADSGoogle Scholar
  2. 2.
    Devoto RS (1973) Phys Fluids 16:616CrossRefADSGoogle Scholar
  3. 3.
    Murphy AB, Arundell CJ (1994) Plasma Chem Plasma Process 14:451CrossRefGoogle Scholar
  4. 4.
    Murphy AB (1995) Plasma Chem Plasma Process 15:279CrossRefMathSciNetGoogle Scholar
  5. 5.
    Murphy AB (1997) IEEE Trans Plas Sci 25:809CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Murphy AB (2000) Plasma Chem Plasma Process 20:279CrossRefGoogle Scholar
  7. 7.
    Fauchais P, Elchinger MF, Aubreton J (2000) J High Temp Material Process 4:21Google Scholar
  8. 8.
    Aubreton J, Elchinger MF, Fauchais P, Rat V, Andre P (2004) J Phys D Appl Phys 37:2232CrossRefADSGoogle Scholar
  9. 9.
    Hirschfelder JO, Kurtis CF, Bird RB (1964) Molecular theory of gases and liquids, 2nd edn. Wiley, New YorkGoogle Scholar
  10. 10.
    Chapman S, Cowling TG (1972) The mathematical theory of transport processes in gases. North-Holland, AmsterdamGoogle Scholar
  11. 11.
    Devoto RS (1967) Phys Fluids 10:2105CrossRefADSGoogle Scholar
  12. 12.
    Devoto RS (1965) Ph.D. thesis, Stanford UniversityGoogle Scholar
  13. 13.
    Miller EJ, Sandler SI (1973) Phys Fluids 16:491CrossRefADSGoogle Scholar
  14. 14.
    Kannappan D, Bose TK (1977) Phys Fluids 20:1668CrossRefADSGoogle Scholar
  15. 15.
    Bonnefoi C (1983) State thesis, University of Limoges, FranceGoogle Scholar
  16. 16.
    Aubreton J, Bonnefoi C, Mexmain JM (1986) Rev Phys Appl 21:365Google Scholar
  17. 17.
    Rat V, Andre P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2001) Phys Rev E 64:064091CrossRefGoogle Scholar
  18. 18.
    Rat V, Aubreton J, Elchinger MF, Fauchais P (2001) Plasma Chem Plasma Process 21:355CrossRefGoogle Scholar
  19. 19.
    Rat V, Andre P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002) Plasma Chem Plasma Process 22:453CrossRefGoogle Scholar
  20. 20.
    Rat V, Andre P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002) Plasma Chem Plasma Process 22:475CrossRefGoogle Scholar
  21. 21.
    Rat V, Andre P, Aubreton J, Elchinger MF, Fauchais P, Vacher D (2002) J Phys D Appl Phys 35:981CrossRefADSGoogle Scholar
  22. 22.
    Aubreton J, Elchinger MF, Rat V, Fauchais P (2004) J Phys D Appl Phys 37:34CrossRefADSGoogle Scholar
  23. 23.
    Ramshaw JD (1993) J Non-Equilib Thermodyn 18:121MATHCrossRefGoogle Scholar
  24. 24.
    Ramshaw JD (1996) J Non-Equilib Thermodyn 21:233MATHGoogle Scholar
  25. 25.
    Andre P, Aubreton J, Elchinger MF, Rat V, Fauchais P, Lefort A, Murphy AB (2004) Plasma Chem Plasma Process 24:435CrossRefGoogle Scholar
  26. 26.
    Chen X, Han P (1999) J Phys D Appl Phys 32:1711CrossRefADSGoogle Scholar
  27. 27.
    van de Sanden MCM, Schram PPJM, Peeters AG, van der Mullen JAM, Kroesen GMW (1989) Phys Rev A 40:5273CrossRefADSGoogle Scholar
  28. 28.
    Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New YorkGoogle Scholar
  29. 29.
    Ferziger JH, Kaper HG (1972) Mathetical theory of transport processes in gases. North Holland, AmsterdamGoogle Scholar
  30. 30.
    Devoto RS (1966) Phys Fluids 9:1230CrossRefADSGoogle Scholar
  31. 31.
    Levin E, Patridge H, Stallcop JR (1990) J Thermophysics 4:469CrossRefADSGoogle Scholar
  32. 32.
    Yun KS, Mason EA (1962) Phys Fluid 5:380CrossRefADSGoogle Scholar
  33. 33.
    Stallcop JR, Patridge H, Levin E (1991) J Chem Phys 95:6429CrossRefADSGoogle Scholar
  34. 34.
    Devoto RS (1976) Phys Fluid 19:22CrossRefADSGoogle Scholar
  35. 35.
    Liboff RI (1959) Phys Fluid 2:40MATHCrossRefADSGoogle Scholar
  36. 36.
    Murphy AB (1993) Phys Rev E 48:3594CrossRefADSGoogle Scholar
  37. 37.
    Li HP, Chen X (2001) Chin Phys Lett 18:547CrossRefADSGoogle Scholar
  38. 38.
    Bose TK, Kannappan D, Seeniraj RV (1985) Warme-und Stoffubertragung 19:3CrossRefADSGoogle Scholar
  39. 39.
    Krinberg IA (1965) High Temp (USSR) 3:606Google Scholar
  40. 40.
    Yos JM (1965) Report RAD TF-65, AVCO Corporation, Wilmington, MassachusettsGoogle Scholar
  41. 41.
    Neumann W, Sacklowski U (1968) Beitr Plasma Phys 8:57Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Ghorui
    • 1
    • 2
  • Joachim V. R. Heberlein
    • 1
  • E. Pfender
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Laser and Plasma Technology DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations