Advertisement

Plasma Chemistry and Plasma Processing

, Volume 27, Issue 4, pp 473–485 | Cite as

Pump Effect of a Capillary Discharge in Electrically Conductive Liquids

  • Filip De BaerdemaekerEmail author
  • Milan Šimek
  • Christophe Leys
  • Willy Verstraete
Original Paper

Abstract

Among the configurations to generate plasma in electrically conductive liquids only the diaphragm and the capillary discharge schemes allow to generate plasma which is not in contact with one of the electrodes. Based on this concept, this work reports for the first time the development of an underwater plasma pump, in which the periodic electrical breakdown inside an asymmetrical (sub-)millimetre hole results in a net flow of aqueous solution through the hole without the use of any moving parts such as valves or diaphragms typically used in micropumps. Certain capillary geometries feature very stable flow rates and even allow altering flow direction by changing the power. By varying the hole’s dimensions, the range of time-independent flow rates covers more than one order of magnitude and as the discharge produces some of the strongest oxidants available, we believe that this concept might find application in fields as water decontamination and sterilization.

Keywords

Water Conductive Capillary AC discharge Pump 

Notes

Acknowledgments

The research was partially funded by the Bilateral Scientific and Technological Cooperation Programme between Flanders and the Czech Republic under Contract No. 2004-2005-03 and No. 01S00206 and was partially supported by Grant Agency of the Academy of Sciences of the Czech Republic under Contract No. A1043403.

References

  1. 1.
    Clements JS, Sato M, Davis RH (1987) IEEE Trans Ind Appl IA-23(2):224–235Google Scholar
  2. 2.
    Sun B, Sato M, Clements JS (1997) J Electrost 39:189–202CrossRefGoogle Scholar
  3. 3.
    Sato M, Ohgiyama T, Clements JS (1996) IEEE Trans Ind Appl 32(1):106–112CrossRefGoogle Scholar
  4. 4.
    Joshi AA, Locke BR, Arce P, Finney WC (1995) J Hazard Mater 41:3–30CrossRefGoogle Scholar
  5. 5.
    Šunka P et al (1999) Plasma Sources Sci Technol 8:258–265CrossRefADSGoogle Scholar
  6. 6.
    Sharma AK, Locke BR, Arce P, Finney WC (1993) Hazard Waste Hazard Mater 10(2):209–219Google Scholar
  7. 7.
    Willberg DM, Lang PS, Höchemer RH, Kratel A, Hoffmann MR (1996) Environ Sci Technol 30:2526–2534CrossRefGoogle Scholar
  8. 8.
    Gilliland SE, Speck ML (1967) Appl Microbiol 15(5):1031–1037Google Scholar
  9. 9.
    Shmelev VM, Evtyukhin NV, Chae JO (1996) Chem Phys Reports 15(3):463–468 [Khimicheskaya Fizika 15(3):140–144 (1996) (in Russian)]Google Scholar
  10. 10.
    Goryachev VL, Rutberg FG, Fedyukovich VN (1996) High Temp 34(5):746–749 [Teplofizika Vysokikh Temperatur 34(5):757–760 (1996) (in Russian)]Google Scholar
  11. 11.
    Anpilov AM et al (2002) Lett Appl Microbiol 35:90–94CrossRefGoogle Scholar
  12. 12.
    Hsin YL, Hwang KC, Chen F-R, Kai J-J (2001) Adv Mater 13(11):830–833CrossRefGoogle Scholar
  13. 13.
    Brablec A, Slavíček P, Stahel P, Čižmár T, Trunec D (2002) Czech J Phys 52(Suppl. D):D491–D500Google Scholar
  14. 14.
    Teslenko VS, Zhukov AI, Mitrofanov VV (1995) Tech Phys Lett 21(9):733–735 [Pis’ma Zh Tekh Fiz 21:20–26 (1995) (in Russian)]Google Scholar
  15. 15.
    Chaussy Ch, Brendel W, Schmiedt E (1980) Lancet 2:1265–1268CrossRefGoogle Scholar
  16. 16.
    Šunka P, Babický V, Člupek M, Beneš J, Poučková P (2004) IEEE Trans Plasma Sci 32(4):1609–1613CrossRefGoogle Scholar
  17. 17.
    Woloszko J, Stalder KR, Brown IG (2002) IEEE Trans Plasma Sci 30(3):1376–1383CrossRefGoogle Scholar
  18. 18.
    Locke BR, Sato M, Šunka P, Hoffmann MR, Chang J-S (2006) Ind Eng Chem Res 45:882–905CrossRefGoogle Scholar
  19. 19.
    Drobyshevskii ÉM, Dunaev YuA, Rozov SI (1973) Sov Phys Tech Phys 18(6):772–774 [Zh Tekh Fiz 43(6):1217–1221 (1973) (in Russian)]Google Scholar
  20. 20.
    Kuzhekin IP (1995) Proc. 9th Int. Symp. on High Voltage Engineering, Graz, Austria, 8073-1–8073-3, 28 August–1 September 1995Google Scholar
  21. 21.
    Sato M, Yamada Y, Sun B (1999) Inst Phys Conf Ser 163:37–40Google Scholar
  22. 22.
    De Baerdemaeker F, Šimek M, Schmidt J, Leys C (2006) Czech J Phys 56(Suppl. B):B624–B631CrossRefGoogle Scholar
  23. 23.
    De Baerdemaeker F, Šimek M, Člupek M, Lukeš P, Leys C (2006) Czech J Phys 56(Suppl. B):B1132–B1139CrossRefGoogle Scholar
  24. 24.
    De Baerdemaeker F, Šimek M, Schmidt J, Leys C (2007) Plasma Sources Sci Technol 16:341–354CrossRefADSGoogle Scholar
  25. 25.
    Laser DJ, Santiago JG (2004) J Micromech Microeng 14:R35–R64CrossRefGoogle Scholar
  26. 26.
    Geng X, Yuan H, Oguz HN, Prosperetti A (2001) J Micromech Microeng 11:270–276CrossRefGoogle Scholar
  27. 27.
    Tsai J-H, Lin L (2002) J Microelectromech Syst 11(6):665–671CrossRefGoogle Scholar
  28. 28.
    Yin Z, Prosperetti A (2005) J Micromech Microeng 15:643–651CrossRefGoogle Scholar
  29. 29.
    Ozaki K (1995) Proc. IEEE Micro Electro Mechanical Systems (MEMS), Amsterdam, The Netherlands, 31–36, 29 January–2 February 1995Google Scholar
  30. 30.
    Jun TK, Kim C-J (1998) J Appl Phys 83(11):5658–5664CrossRefADSGoogle Scholar
  31. 31.
    Song YJ, Zhao TS (2001) J Micromech Microeng 11:713–719CrossRefGoogle Scholar
  32. 32.
    Gerlach T, Wurmus H (1995) Sensors and Actuators A50:135–140Google Scholar
  33. 33.
    Matsumoto S, Maeda R, Klein A (1999) Microscale Thermophys Eng 3:31–42CrossRefGoogle Scholar
  34. 34.
    De Baerdemaeker F (2007) Capillary Discharges in Electrically Conductive Aqueous Solutions. Ph.D. Dissertation. Faculty of Engineering, Ghent University, Ghent, Belgium, ISBN 978-90-8578-137-0Google Scholar
  35. 35.
    Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671–698CrossRefGoogle Scholar
  36. 36.
    Walling C (1975) Accounts Chem Res 8:125–131CrossRefGoogle Scholar
  37. 37.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17(2):513–886ADSGoogle Scholar
  38. 38.
    Lide DR (ed) (2003–2004) CRC handbook of chemistry and physics, 84th edn. CRC Press LLC, Boca Raton Florida, USAGoogle Scholar
  39. 39.
    Nguyen N-T, Wu Z (2005) J Micromech Microeng 15:R1–R16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Filip De Baerdemaeker
    • 1
    • 2
    Email author
  • Milan Šimek
    • 1
  • Christophe Leys
    • 2
  • Willy Verstraete
    • 3
  1. 1.Institute of Plasma PhysicsAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Department of Applied PhysicsGhent UniversityGhentBelgium
  3. 3.Laboratory of Microbial Ecology and Technology (LabMET)Ghent UniversityGhentBelgium

Personalised recommendations