Advertisement

Plasma Chemistry and Plasma Processing

, Volume 27, Issue 3, pp 241–255 | Cite as

Decomposition of Gaseous Sulfide Compounds in Air by Pulsed Corona Discharge

  • Julien JarrigeEmail author
  • Pierre Vervisch
Original Paper

Abstract

The effectiveness of applying a pulsed corona discharge to the destruction of olfactory pollution in air was investigated. This paper presents a comparative study of the decomposition of three representative sulfide compounds in diluted concentrations: hydrogen sulfide (H2S), dimethyl sulfide (DMS), and ethanethiol (C2H5SH), which could be completely removed when a sufficient but reasonable energy density was deposited in the gas. DMS showed the lowest energy cost (around 30 eV/molecules); C2H5SH and H2S had an EC of respectively 45 eV and 115 eV. The efficiency of the non-thermal plasma process increased with decreasing the initial concentration of sulfide compounds, while the energy yield remained almost unchanged. SO2 was the only identified byproduct of H2S decomposition, but the sulfur balance suggests the formation of undetected SO3. The byproducts analyzed during the degradation of DMS and C2H5SH enabled to propose a reaction mechanism, starting with radical attack and breaking of C–S bonds.

Keywords

Corona discharge Non-thermal plasma Hydrogen sulfide Dimethyl sulfide Ethanethiol 

Notes

Acknowledgements

The authors are grateful to the French CNRS GdR n° 2495 “Cataplasme”. The first author acknowledges the financial support provided by the French procurement agency (DGA).

References

  1. 1.
    Busca G, Pistarino C (2003) J Loss Prevent Proc Ind 16:363CrossRefGoogle Scholar
  2. 2.
    Le Cloirec J-L, Fanlo C (2003) Gracian, Traitement des Odeurs – Procédés curatifs, Techniques de l’Ingénieur, Traité environnement G 2:971Google Scholar
  3. 3.
    Vorontsov AV, Savinov EV, Davydov L, Smirniotis PG (2001) Appl Catal B: Environ 32:11CrossRefGoogle Scholar
  4. 4.
    Vorontsov AV, Savinov EN, Lion C, Smirniotis PG (2003) Appl Catal B: Environ 44:25CrossRefGoogle Scholar
  5. 5.
    Kozlov DV, Vorontsov AV, Smirniotis PG, Savinov EN (2003) Appl Catal B: Environ 42:77CrossRefGoogle Scholar
  6. 6.
    Demeestere K, Dewulf J, De Witte B, Van Langenhove H (2005) Appl Catal B: Environ 60:93CrossRefGoogle Scholar
  7. 7.
    Clothiaux EJ, Koropchak JA, Moore RR (1984) Plasma Chem Plasma Process 4:15CrossRefGoogle Scholar
  8. 8.
    Mätzing H (1992) In: Penetrante BM, Schultheis SE (eds) N non-thermal plasma techniques for pollution control, NATO Advanced Studies Institute, Series G: Ecological sciences, vol 34, part A. Springer-Verlag, Berlin, p 59Google Scholar
  9. 9.
    Krasnoperov LN, Krishtopa LG, Bozzelli JW (1997) J Adv Oxid Technol 2:248Google Scholar
  10. 10.
    Penetrante BM, Hsiao MC, Bardsley JN, Merritt BT, Vogtlin GE, Kuthi A, Burkhart CP, Bayless JR (1997) Plasma Sources Sci Technol 6:251CrossRefADSGoogle Scholar
  11. 11.
    Futamura S, Zhang AH, Yamamoto T (1997) J Electrostat 42:51CrossRefGoogle Scholar
  12. 12.
    Oda T, Kumada A, Tanaka K, Takahashi T, Masuda S (1995) J Electrostat 35:93CrossRefGoogle Scholar
  13. 13.
    Mok YS, Nam CM, Cho MH (2002) IEEE Trans Plasma Sci 30:408CrossRefGoogle Scholar
  14. 14.
    Rudolph R, Francke KP, Miessner H (2002) Plasma Chem Plasma Process 22:401CrossRefGoogle Scholar
  15. 15.
    Jarrige J, Vervisch P (2006) J Appl Phys 99Google Scholar
  16. 16.
    Chang MB, Chang C-C (1997) AIChe J 43:1325CrossRefGoogle Scholar
  17. 17.
    Rosocha LA, Korzekwa RA (1999) J Adv Oxid Technol 4:247Google Scholar
  18. 18.
    Czernichowski A (1999) Oil Gas Sci Technol 54:337Google Scholar
  19. 19.
    Dalaine V, Cormier JM, Lefaucheux P (1998) J Appl Phys 83:2435CrossRefADSGoogle Scholar
  20. 20.
    Helfricht DJ (1992) In: Penetrante BM, Schultheis SE (eds) Non-thermal plasma techniques for pollution control, NATO Advanced Studies Institute, series G: ecological sciences, vol 34, part B. Springer-Verlag, Berlin, p 211Google Scholar
  21. 21.
    Abolentsev VA, Korobtsev SV, Medvedev DD, Rusanov VD, Shiryaevsky VL (1992) In: Penetrante BM, Schultheis SE (eds) Non-thermal plasma techniques for pollution control, NATO Advanced Studies Institute, series G: ecological sciences, vol 34, part B. Springer-Verlag, Berlin, p 139Google Scholar
  22. 22.
    Ma H, Chen P, Ruan R (2001) Plasma Chem. Plasma Process 21:611CrossRefGoogle Scholar
  23. 23.
    Ruan JJ, Li W, Shi Y, Nie Y, Wang X, Tan T (2005) Chemosphere 59:327CrossRefGoogle Scholar
  24. 24.
    Sobacchi MG, Saveliev AV, Fridman AA, Gutsol AF, Kennedy LA (2003) Plasma Chem Plasma Process 23:347CrossRefGoogle Scholar
  25. 25.
    Shi Y, Ruan JJ, Wang X, Li W, Tan T (2006) Plasma Chem Plasma Process 26:187CrossRefGoogle Scholar
  26. 26.
    Li Z, Hu Z, Li Y, Sun XL (2006) In: Proc XVI int. conf. on gas discharges and their applications. Xi’an, ChinaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.UMR 6614—CORIASaint Etienne du Rouvray CedexFrance

Personalised recommendations