Plasma Chemistry and Plasma Processing

, Volume 27, Issue 2, pp 163–176 | Cite as

Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines

  • Gregory Fridman
  • Alexey Shereshevsky
  • Monika M. Jost
  • Ari D. Brooks
  • Alexander Fridman
  • Alexander Gutsol
  • Victor Vasilets
  • Gary Friedman
Original Paper


Initiation of apoptosis, or programmed cell death, is an important issue in cancer treatment as cancer cells frequently have acquired the ability to block apoptosis and thus are more resistant to chemotherapeutic drugs. Targeted and perhaps selective destruction of cancerous tissue is desirable for many reasons, ranging from the enhancement of or aid to current medical methods to problems currently lacking a solution, i.e., lung cancer. Demonstrated in this publication is the inactivation (killing) of human Melanoma skin cancer cell lines, in vitro, by Floating Electrode Dielectric Barrier Discharge (FE-DBD) plasma. Not only are these cells shown to be killed immediately by high doses of plasma treatment, but low doses are shown to promote apoptotic behavior as detected by TUNEL staining and subsequent flow cytometry. It is shown that plasma acts on the cells directly and not by “poisoning” the solution surrounding the cells, even through a layer of such solution. Potential mechanisms of interaction of plasma with cells are discussed and further steps are proposed to develop an understanding of such systems.


Non-thermal plasma Dielectric barrier discharges (DBDs) Apoptosis Melanoma cancer cells Cancer treatment Skin diseases 



This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) Award #W81XWH-05-2-0068, National Science Foundation (NSF) Grant #ECS-0304453. Assistance from DARPA program managers Drs. Rick Satava and Jay Lowell is greatly appreciated.


  1. 1.
    Johnstone RW, Ruefli AA, Lowe SW (2002) Cell 108(2):153CrossRefGoogle Scholar
  2. 2.
    Dee Unglaub Silverthorn WCO, Garrison CW, Silverthorn AC, Johnson BR (2004) Human physiology, an integrated approach, 3rd edn. Benjamin-Cummings Publishing Company, pp 912Google Scholar
  3. 3.
    Poll HU, Schladitz U, Schreiter S (2001) Surf Coat Technol 142–144:489CrossRefGoogle Scholar
  4. 4.
    Vohrer U, Muller H, Oehr C (1998) Surf Coat Technol 98(1–3):1128CrossRefGoogle Scholar
  5. 5.
    Hocker H (2002) Pure Appl Chem 74(3):423Google Scholar
  6. 6.
    Chen K (1984) Indus Appl, IEEE Trans 20(5):1179Google Scholar
  7. 7.
    Chen K, Murray WA (1980) Indus Appl, IEEE Trans 16(3):413Google Scholar
  8. 8.
    Bogaerts A et al (2002) Spectrochim Acta Part B 57(8):609CrossRefGoogle Scholar
  9. 9.
    Kunhardt EE (2000) Plasma Sci, IEEE Trans 28(1):189CrossRefGoogle Scholar
  10. 10.
    Fridman A, Chirokov A, Gutsol A (2005) J Phys D: Appl Phys 38(2):R1CrossRefADSGoogle Scholar
  11. 11.
    Raizer Yu P (1991) Gas discharge physics. Springer, BerlinGoogle Scholar
  12. 12.
    Alexander A, Fridman LAK (2004) Plasma physics and engineering, 1st edn. Taylor & Francis Group, pp 860Google Scholar
  13. 13.
    Burtsev VA et al (2000) Plasma Sci, IEEE Trans 28(1):201CrossRefGoogle Scholar
  14. 14.
    Chirokov A et al (2005) Plasma Sci, IEEE Trans 33(2):300CrossRefGoogle Scholar
  15. 15.
    Chu PK et al (2002) Mater Sci Eng R-Reports 36(5–6):143CrossRefGoogle Scholar
  16. 16.
    Fridman G et al (2006) Plasma Chem Plasma Process 26(4):425CrossRefGoogle Scholar
  17. 17.
    Birmingham JG, Hammerstrom DJ (2000) Plasma Sci, IEEE Trans 28(1):51CrossRefGoogle Scholar
  18. 18.
    Cheng C et al (2006) Chin Phys 15(7):1544CrossRefADSGoogle Scholar
  19. 19.
    Cvelbar U et al (2006) J Phys D: Appl Phys 39(16):3487CrossRefADSGoogle Scholar
  20. 20.
    Farrar LC et al (2000) Plasma Sci, IEEE Trans 28(1):173CrossRefGoogle Scholar
  21. 21.
    Soloshenko IA et al (2000) Plasma Phys Reports 26:792CrossRefADSGoogle Scholar
  22. 22.
    Laroussi M, Mendis DA, Rosenberg M (2003) New J Phys 5:41CrossRefGoogle Scholar
  23. 23.
    Moisan M et al (2002) Pure Appl Chem 74(3):349Google Scholar
  24. 24.
    Efremov NM et al (2000) Plasma Sci, IEEE Trans 28(1):238CrossRefMathSciNetGoogle Scholar
  25. 25.
    Foster KR (2000) Plasma Sci, IEEE Trans 28(1):15CrossRefGoogle Scholar
  26. 26.
    Girard-Lauriault PL et al (2005) Plasma Process Poly 2(3):263CrossRefGoogle Scholar
  27. 27.
    Kieft IE et al (2004) Bioelectromagnetics 25(5):362CrossRefGoogle Scholar
  28. 28.
    Leveille V, Coulombe S (2005) Plasma Sour Sci Technol 14(3):467(410)Google Scholar
  29. 29.
    Brown IG et al (2003) Plasma Phys Control Fus 45(5):547CrossRefADSGoogle Scholar
  30. 30.
    Coulombe S et al (2006) Pure Appl Chem 78(6):1147CrossRefGoogle Scholar
  31. 31.
    Kieft IE et al (2005) Plasma Sci, IEEE Trans 33(2):771CrossRefGoogle Scholar
  32. 32.
    Strobel M, Lyons CS (1994) J Adhes Sci Technol 8(4):303Google Scholar
  33. 33.
    Chan CM, Ko TM, Hiraoka H (1996) Surf Sci Rep 24(1–2):3Google Scholar
  34. 34.
    Holmes S, Schwartz P (1990) Comp Sci Technol 38(1):1CrossRefGoogle Scholar
  35. 35.
    Stoffels E (2006) J Phy D: Appl Phys 39(16)Google Scholar
  36. 36.
    Watson JP et al (1997) Gut 40:Th156Google Scholar
  37. 37.
    Vargo JJ (2004) Gastrointest Endosc 59(1):81CrossRefGoogle Scholar
  38. 38.
    Puhlev I. et al (2001) Cryobiology 42(3):207CrossRefGoogle Scholar
  39. 39.
    Colt HG, Crawford SW (2006) Respirology 11(5):643CrossRefGoogle Scholar
  40. 40.
    Raiser J, Zenker M (2006) J Phys D: Appl Phys 39(16):3520CrossRefADSGoogle Scholar
  41. 41.
    Anderson KM et al (1999) Med Hypotheses 52(5):451CrossRefGoogle Scholar
  42. 42.
    Eliasson B, Egli W, Kogelschatz U (1994) Pure Appl Chem 66(6):1275Google Scholar
  43. 43.
    Baydarovtsev YP, Vasilets VN, Ponomarev AN (1985) Russ J Chem Phys 4(N1):89Google Scholar
  44. 44.
    Yalin AP et al (2002) Plasma Sour Sci Technol 11(3):248CrossRefADSGoogle Scholar
  45. 45.
    Stoffels E et al (2002) Plasma Sour Sci Technol 11(4):383CrossRefADSGoogle Scholar
  46. 46.
    Stoffels E (2000) High Temp Mater Process 5(2):191Google Scholar
  47. 47.
    Sosnin EA et al (2004) Plasma Sci, IEEE Trans 32(4):1544CrossRefGoogle Scholar
  48. 48.
    Sosnin EA et al (2004) Techn Phys Lett 30(7):615CrossRefMathSciNetGoogle Scholar
  49. 49.
    Porter KA et al (1998) Amer J Surg 176(1):8CrossRefADSGoogle Scholar
  50. 50.
    Rappaport WD et al (1990) Amer J Surg 160(6):618CrossRefGoogle Scholar
  51. 51.
    Simmons PD, Langlet F, Thin RN (1981) Br J Vener Dis 57(4):273Google Scholar
  52. 52.
    Ginsberg GG et al (2002) Gastrointest Endosc 55(7):807Google Scholar
  53. 53.
    Kieft IE, Kurdi M, Stoffels E (2006) Plasma Sci, IEEE Trans 34(4):1331CrossRefGoogle Scholar
  54. 54.
    Weaver JC (2000) Plasma Sci, IEEE Trans 28(1):24CrossRefGoogle Scholar
  55. 55.
    Priglinger SG et al (2005) Arch Ophthalmol 123(10):1412CrossRefGoogle Scholar
  56. 56.
    Miller JM et al (2003) Arch Ophthalmol 121(6):871CrossRefGoogle Scholar
  57. 57.
    Kogelschatz U (2003) Plasma Chem Plasma Process 23(1):1CrossRefGoogle Scholar
  58. 58.
    Silverthorn DU et al (2004) Human physiology, an integrated approach, 3rd edn. Benjamin-Cummings Publishing Company, pp 912Google Scholar
  59. 59.
    Negoescu A et al (1996) J Histochem Cytochem 44(9):959Google Scholar
  60. 60.
    Labat-Moleur F et al (1998) J Histochem Cytochem 46(3):327Google Scholar
  61. 61.
    Sun B, Sato M, Clements JS (1999) J Phys D: Appl Phys 32(15):1908CrossRefADSGoogle Scholar
  62. 62.
    Ataullakhanov FI et al (1994) Thromb Res 75(4):383CrossRefGoogle Scholar
  63. 63.
    Zhang R et al (2006) Plasma Sci, IEEE Trans 34(4):1370CrossRefGoogle Scholar
  64. 64.
    Tarasenko O et al (2006) Plasma Sci, IEEE Trans 34(4):1281CrossRefGoogle Scholar
  65. 65.
    Sladek REJ, Baede TA, Stoffels E (2006) Plasma Sci, IEEE Trans 34(4):1325CrossRefGoogle Scholar
  66. 66.
    Sharma A et al (2006) Plasma Sci, IEEE Trans 34(4):1290CrossRefGoogle Scholar
  67. 67.
    Laroussi M et al (2006) Plasma Process Polym, 3(6–7):470CrossRefGoogle Scholar
  68. 68.
    Kuo SP et al (2006) Plasma Sci, IEEE Trans 34(4):1275CrossRefGoogle Scholar
  69. 69.
    Sladek REJ, Stoffels E (2005) J Phys D: Appl Phys 38(11):1716CrossRefADSGoogle Scholar
  70. 70.
    Goree J et al (2006) Plasma Sci, IEEE Trans 34(4):1317CrossRefGoogle Scholar
  71. 71.
    Williamson JM et al (2006) J Phys D: Appl Phys 39(20):4400CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gregory Fridman
    • 1
  • Alexey Shereshevsky
    • 2
  • Monika M. Jost
    • 3
  • Ari D. Brooks
    • 4
  • Alexander Fridman
    • 5
  • Alexander Gutsol
    • 5
  • Victor Vasilets
    • 5
  • Gary Friedman
    • 6
  1. 1.School of Biomedical Engineering, Science, and Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.Department of SurgeryDrexel University College of MedicinePhiladelphiaUSA
  3. 3.Department of Radiation OncologyDrexel University College of MedicinePhiladelphiaUSA
  4. 4.Department of SurgeryDrexel University School of MedicinePhiladelphiaUSA
  5. 5.Department of Mechanical Engineering and MechanicsDrexel UniversityPhiladelphiaUSA
  6. 6.Department of Electrical and Computer EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations