Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The Effect of Shot Peening on Steam Oxidation of 304H Stainless Steel

  • 96 Accesses

Abstract

Shot peening is currently utilized in coal-fired power plant components to mitigate scale exfoliation issues from steamside oxidation of austenitic stainless steel superheater and reheater tubing. To focus on commercially available material, this study exposed quarter-ring specimens cut from two different commercially shot peened type 304H tubes and exposed to 1 bar steam for up to 15,000 h at 550°, 600°, 625°, and 650 °C. Specimens were removed at increments to characterize the oxide thickness and microstructure. The shot peened inner surface generally retained a thin, protective Cr-rich scale with occasional Fe-rich oxide nodules at 550–625 °C. The increased oxidation resistance from shot peening began to degrade at 650 °C after as little as 5,000 h. Cut and polished faces of these specimens formed thick, Fe-rich oxides similar to polished 304H coupons. Surprisingly, the mechanically machined outer surface of the tube specimens performed similarly to the shot peened inner diameter, suggesting it had sufficient cold work to achieve a similar benefit. Electron backscatter diffraction and Vickers-hardness measurements were used to characterize post-exposure changes in underlying microstructure and mechanical properties, respectively, imparted by shot peening.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    A. J. B. Cutler, and E. Raask, Corrosion Science21, 789 (1981).

  2. 2.

    D. B. Meadowcroft, Materials Science and Engineering88, 313 (1987).

  3. 3.

    J. Henry, G. Zhou and T. Ward, Materials at High Temperatures24, 249 (2007).

  4. 4.

    I. M. Rehn, W. R. Apblett Jr, and J. Stringer, Materials Performance20, 27 (1981).

  5. 5.

    N. Nishimura, N. Komai, Y. Hirayama, and F. Masuyama, Materials at High Temperatures22, 3 (2005).

  6. 6.

    S. R. J. Saunders, and N. L. McCartney, Materials Science Forum522-523, 119 (2006).

  7. 7.

    I. G. Wright, and R. B. Dooley, International Materials Reviews55, 129 (2010).

  8. 8.

    2nd EPRI-NPL workshop on scale exfoliation from steam-touched surfaces. EPRI, Palo Alto, CA: 2012. 1026663.

  9. 9.

    J. P. Shingledecker, B. Pint, A. Sabau, A. Fry, and I. G. Wright, Advanced Materials & Processes171, 23 (2013).

  10. 10.

    A. T. Fry, L. J. Brown, and J. P. Banks, The effect of heat flux on the steam oxidation kinetics and scale morphology of low alloy materials. in Proceedings of 6th International Conference on Advances in Materials Technology for Fossil Power Plants, EPRI, Charlotte, NC, 2011, eds. D. Gandy, J. Shingledecker, R. Viswanathan, pp. 171.

  11. 11.

    M. M. Stack, J. Chacon-Nava, and F. H. Stott, Wear180, 91 (1995).

  12. 12.

    S.-S. Wang, L. Cai, J.-R. Mao, J.-J. Zhang, Y.-T. Xu, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy227, 546 (2013).

  13. 13.

    I. G. Wright, M. Schutze, P. F. Tortorelli, and R. B. Dooley, Materials at High Temperatures24, 265 (2007).

  14. 14.

    I. G. Wright, A. S. Sabau, and R. B. Dooley, Materials Science Forum595-598, 387 (2008).

  15. 15.

    A. S. Sabau, and I. G. Wright, Oxidation of Metals73, 467 (2010).

  16. 16.

    C. T. Fujii, and R. A. Meussner, Journal of The Electrochemical Society111, 1215 (1964).

  17. 17.

    H. Asteman, J. E. Svensson, M. Norell, and L. G. Johansson, Oxidation of Metals54, 11 (2000).

  18. 18.

    W. J. Quadakkers, J. Żurek, and M. Hänsel, JOM61, 44 (2009).

  19. 19.

    D. J. Young, and B. A. Pint, Oxidation of Metals66, 137 (2006).

  20. 20.

    R. Sivakumar, and E. J. Rao, Oxidation of Metals17, 391 (1982).

  21. 21.

    N. V. Bangaru, and R. C. Krutenat, Journal of Vacuum Science & Technology B2, 806 (1984).

  22. 22.

    D. M. Miller, S. C. Kung, S. D. Scarberry, and R. A. Rapp, Oxidation of Metals29, 239 (1988).

  23. 23.

    D. Wang, Surface and Coatings Technology36, 49 (1988).

  24. 24.

    A. Agüero, R. Muelas, M. Gutiérrez, R. Van Vulpen, S. Osgerby, and J. P. Banks, Surface and Coatings Technology201, 6253 (2007).

  25. 25.

    J. Allenou, J. Piron Abellan, E. Hugon, C. Landier, and T. Le Guevel, Influence of aluminium diffusion layer on T/P92 steam oxidation resistance—a laboratory and field study. in Proceedings from the 8th International Conference on Advances in Materials Technology for Fossil Power Plants, pp. 1113–1125 (2016).

  26. 26.

    B. M. Tossey, H. Khan, and T. Andress, Steam oxidation resistance of shot peened austenitic stainless steel superheater tubes. NACE Paper 11-186, Houston, TX, presented at NACE Corrosion 2011, Houston, TX, March 2011.

  27. 27.

    B. A. Pint, J. P. Shingledecker, and I. G. Wright, Characterization of steam oxidation products from field-exposed tubes. in International Conference on Advances in Condition and Remaining Life Assessment for Fossil Power Plants—Coal, Gas and Heat Recovery Steam Generator (2012).

  28. 28.

    J. C. Rosser, M. I. Bass, and C. Cooper et al., Materials at High Temperatures29, 95 (2012).

  29. 29.

    R. Naraparaju, H. J. Christ, F. U. Renner, and A. Kostka, Oxidation of Metals76, 233 (2011).

  30. 30.

    R. Naraparaju, H. J. Christ, F. U. Renner, and A. Kostka, Materials at High Temperatures29, 116 (2012).

  31. 31.

    V. Bystrianský, A. Krausová, J. Macák, J. Děd, E. Eltai, and A. M. Hamouda, Applied Surface Science427, 680 (2018).

  32. 32.

    H. Ma, Y. He, S.-Y. Bae, and K. Shin, Journal of Nanoscience and Nanotechnology18, 6167 (2018).

  33. 33.

    D. Caplan, Corrosion Science6, 509 (1966).

  34. 34.

    D. Caplan and M. Cohen, Corrosion Science6, 321 (1966).

  35. 35.

    A. S. Khanna, and J. B. Gnanamoorthy, Oxidation of Metals23, 17 (1985).

  36. 36.

    B. A. Pint, JOM65, 1024 (2013).

  37. 37.

    S. R. J. Saunders, M. Monteiro, and F. Rizzo, Progress in Materials Science53, 775 (2008).

  38. 38.

    N. Otsuka, Y. Shida, and H. Fujikawa, Oxidation of Metals32, 13 (1989).

  39. 39.

    B. A. Pint, The effect of shot peening on steam oxidation of stainless steel at 600–650°C. NACE Paper C2017-9426, Houston, TX, presented at NACE Corrosion 2017, New Orleans, LA, March 2017.

  40. 40.

    J. Ehlers, D. J. Young, and E. J. Smaardijk et al., Corrosion Science48, 3428 (2006).

  41. 41.

    R. Peraldi, and B. A. Pint, Oxidation of Metals61, 463 (2004).

  42. 42.

    K. Nam, Y. He, and K. Shin, Journal of Nanoscience and Nanotechnology18, 6274 (2018).

  43. 43.

    Y. Nishiyama, A. Iseda, M. Yoshizawa, S. Matsumoto, and M. Igarashi, Effect of Grain Size on Steam Oxidation for Shot-Peened Stainless Steels”. in Proceedings of 6th International Conference on Advances in Materials Technology for Fossil Power Plants, EPRI, Charlotte, NC, 2011, eds. D. Gandy, J. Shingledecker, R. Viswanathan, p. 185.

  44. 44.

    H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

Download references

Acknowledgements

The authors would like to thank G. W. Garner, M. Howell, T. M. Lowe and T. Jordan for assistance with the experimental work. American Electric Power donated the shot peened 304H tubes for this study. R. Pillai and Y. Yamamoto at ORNL provided helpful comments on the manuscript. This research was sponsored by the U.S. Department of Energy, Office of Fossil Energy, Cross-cutting Technology Program.

Author information

Correspondence to Bruce A. Pint.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurley, J.M., Pint, B.A. The Effect of Shot Peening on Steam Oxidation of 304H Stainless Steel. Oxid Met 93, 159–174 (2020). https://doi.org/10.1007/s11085-019-09951-9

Download citation

Keywords

  • Stainless steel
  • Shot peening
  • Cold work
  • Steam oxidation
  • Oxide spallation