Effect of Cyclic Reaction on Corrosion Behavior of Chromium-Containing Alloys in CO2 Gas at 650 °C

  • Xuteng Xi
  • Charlie Kong
  • Jianqiang ZhangEmail author
Original Paper


In this work, seven commercial alloys (602CA, 310SS, 253MA, F321, F316L, 800H and 304SS) were investigated in Ar–20% CO2 gas at 650 °C under a cyclic condition (1-h reaction and 0.25-h cooling in each cycle) for up to 310 cycles. The corrosion behavior of these alloys in isothermal reaction condition was also carried out for a purpose of comparison. The results showed that nickel-based 602CA alloy stayed protective in both isothermal and cyclic reaction conditions by forming a thin protective alumina scale. However, alloys F321, F316L, 800H and 304SS all formed thick multilayered oxides with external iron-rich oxides and internal spinel oxides in all reaction conditions. Alloys 310SS and 253MA behaved protective in isothermal reaction condition but formed pitting corrosion in cyclic reaction condition. The high corrosion resistance of 310SS and 253MA was attributed to the high Cr content and the effect of other alloying elements, e.g., Si and Mn, forming additional oxide layers to enhance chromia protection. Cyclic reaction created stress on oxide scale during cooling and heating which accelerated the initiation of breakaway corrosion of these alloys. Carburization due to CO2 reaction was identified for F321, F316L and 304SS, but not for other alloys because of the formation of highly protective alumina or chromia scales.


Austenitic alloys Cyclic effect CO2 High-temperature corrosion 



The authors would like to thank Australian Research Council for financial support of this project under the Discovery Project Scheme.


  1. 1.
    B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta and T. F. Wall, Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science.31, 283–307 (2005).CrossRefGoogle Scholar
  2. 2.
    F. Chatel-Pelage, O. Marin, N. Perrin et al, A pilot-scale demonstration of oxy-combustion with flue gas recirculation in a pulverized coal-fired boiler, in The 28th International Technical Conference on Coal Utilization & Fuel Systems, Florida (2003).Google Scholar
  3. 3.
    D. Singh, E. Croiset, P. Douglas and M. A. Douglas, Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Conversion and Management44, 3073–3091 (2003).CrossRefGoogle Scholar
  4. 4.
    C. A. Powell and B. D. Morreale, Materials challenges in advanced coal conversion technologies. MRS Bulletin33, 309–315 (2008).CrossRefGoogle Scholar
  5. 5.
    R. Viswanathan and W. Bakker, Materials for Ultrasupercritical Coal Power Plants—Boiler Materials: Part 1. Journal of Materials Engineering and Performance10, 81–95 (2001).CrossRefGoogle Scholar
  6. 6.
    J. P. Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments. Materials at High Temperatures26, 63–72 (2009).CrossRefGoogle Scholar
  7. 7.
    J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. Quadakkers, The oxidation behaviour of the 9% Cr steel P92 in CO2-and H2O-rich gases relevant to oxyfuel environments. International Journal of Materials Research101, 287–299 (2010).CrossRefGoogle Scholar
  8. 8.
    D. Huenert and A. Kranzmann, Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic–martensitic and austenitic steels. Corrosion Science53, 2306–2317 (2011).CrossRefGoogle Scholar
  9. 9.
    Z. W. Zhao, Y. Z. Li, B. W. Li, S. Li and W. F. Wu, Analysis on high temperature oxidation of U71Mn steel under CO2. Advanced Materials Research496, 359–362 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Behnamian, A. Mostafaei, A. Kohandehghan, et al., A comparative study on the oxidation of austenitic alloys 304 and 304-oxide dispersion strengthened steel in supercritical water at 650 °C. The Journal of Supercritical Fluids.119, 245–260 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Halvarsson, J. E. Tang, H. Asteman, J. E. Svensson and L. G. Johansson, Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 °C. Corrosion Science.48, 2014–2035 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Sun, X. Wu, Z. Zhang and E.-H. Han, Oxidation of 316 stainless steel in supercritical water. Corrosion Science51, 1069–1072 (2009).CrossRefGoogle Scholar
  13. 13.
    M. Nezakat, H. Akhiani, S. Penttilä, S. M. Sabet and J. Szpunar, Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water. Corrosion Science94, 197–206 (2015).CrossRefGoogle Scholar
  14. 14.
    L. Tan, K. Sridharan and T. R. Allen, The effect of grain boundary engineering on the oxidation behavior of INCOLOY alloy 800H in supercritical water. Journal of Nuclear Materials348, 263–271 (2006).CrossRefGoogle Scholar
  15. 15.
    J. E. Antill and J. B. Warburton, Behaviour of carbon during the corrosion of stainless steel by carbon dioxide. Corrosion Science7, 645–649 (1967).CrossRefGoogle Scholar
  16. 16.
    H. E. McCoy, Type 304 stainless steel vs. flowing CO2 at atmospheric pressure and 1100–1800 F. Corrosion21, 84–94 (1965).CrossRefGoogle Scholar
  17. 17.
    G. Cao, V. Firouzdor, K. Sridharan, M. Anderson and T. R. Allen, Corrosion of austenitic alloys in high temperature supercritical carbon dioxide. Corrosion Science60, 246–255 (2012).CrossRefGoogle Scholar
  18. 18.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
  19. 19.
    R. Viswanathan, J. Sarver and J. M. Tanzosh, Boiler materials for ultra-supercritical coal power plants: steamside oxidation. Journal of Materials Engineering and Performance15, 255–274 (2006).CrossRefGoogle Scholar
  20. 20.
    D. Monceau and D. Poquillon, Continuous thermogravimetry under cyclic conditions. Oxidation of Metals61, 143–163 (2004).CrossRefGoogle Scholar
  21. 21.
    A. Raffaitin, D. Monceau, E. Andrieu and F. Crabos, Cyclic oxidation of coated and uncoated single-crystal nickel-based superalloy MC2 analyzed by continuous thermogravimetry analysis. Acta Materialia54, 4473–4487 (2006).CrossRefGoogle Scholar
  22. 22.
    M. Schütze and W. J. Quaddakkers, Cyclic Oxidation of High Temperature Materials: (EFC 27), (Maney Publishing, Frankfurt/Main, 1999).Google Scholar
  23. 23.
    N. K. Othman, J. Zhang and D. J. Young, Temperature and water vapour effects on the cyclic oxidation behaviour of Fe–Cr alloys. Corrosion Science52, 2827–2836 (2010).CrossRefGoogle Scholar
  24. 24.
    N. K. Othman, J. Zhang and D. J. Young, Effect of water vapour on cyclic oxidation of Fe–Cr alloys. Materials and Corrosion62, 496–503 (2011).CrossRefGoogle Scholar
  25. 25.
    R. K. S. Raman, B. Gleeson and D. J. Young, Laser Raman spectroscopy: a technique for rapid characterisation of oxide scale layers. Materials Science and Technology14, 373–376 (1998).CrossRefGoogle Scholar
  26. 26.
    K. F. McCarty and D. R. Boehme, A Raman study of the systems Fe 3−xCrxO4 and Fe2−xCrxO3. Journal of Solid State Chemistry79, 19–27 (1989).CrossRefGoogle Scholar
  27. 27.
    C. Wagner, Reaktionstypen bei der Oxydation von Legierungen. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie63, 772–782 (1959).Google Scholar
  28. 28.
    R. A. Rapp, The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys. Acta Metallurgica9, 730–741 (1961).CrossRefGoogle Scholar
  29. 29.
    J. H. Swisher and E. T. Turkdogan, Solubility, permeability, and diffusivity of oxygen in solid iron. Transactions of the Metallurgical Society of AIME239, 426–431 (1967).Google Scholar
  30. 30.
    J.-W. Park and C. J. Altstetter, The diffusion and solubility of oxygen in solid nickel. Metallurgical Transactions A18, 43–50 (1987).CrossRefGoogle Scholar
  31. 31.
    J. Takada, S. Yamamoto, S. Kikuchi and M. Adachi, Determination of diffusion coefficient of oxygen in γ-iron from measurements of internal oxidation in Fe-Al alloys. Metallurgical Transactions A17, 221–229 (1986).CrossRefGoogle Scholar
  32. 32.
    J. Askill, Tracer diffusion in the chromium–nickel system. Physica status solidi (a)8, 587–596 (1971).CrossRefGoogle Scholar
  33. 33.
    P. I. Williams and R. G. Faulkner, Chemical volume diffusion coefficients for stainless steel corrosion studies. Journal of Materials Science22, 3537–3542 (1987).CrossRefGoogle Scholar
  34. 34.
    H. S. Daruvala and K. R. Bube, Tracer diffusion of chromium in 304 stainless steel. Materials Science and Engineering41, 293–295 (1979).CrossRefGoogle Scholar
  35. 35.
    R. A. Perkins, R. A. Padgett and N. K. Tunali, Tracer diffusion of 59Fe and 51Cr in Fe-17 Wt Pet Cr-12 Wt Pet Ni austenitic alloy. Metallurgical Transactions4, 2535–2540 (1973).CrossRefGoogle Scholar
  36. 36.
    A. F. Smith and G. B. Gibbs, Volume and Grain-Boundary Diffusion in 20 Cr/25 Ni/Nb Stainless Steel. Metal Science Journal3, 93–94 (1969).CrossRefGoogle Scholar
  37. 37.
    Z. Tőkei, K. Hennesen, H. Viefhaus and H. J. Grabke, Diffusion of chromium in ferritic and austenitic 9–20 wt.%chromium steels. Materials Science and Technology16, 1129–1138 (2000).CrossRefGoogle Scholar
  38. 38.
    C. Wagner, Theoritical analysis of the diffusion processes determining the oxidation rate of alloys. Journal of the Electrochemical Society99, 369–380 (1952).CrossRefGoogle Scholar
  39. 39.
    T. D. Nguyen, J. Zhang and D. J. Young, Effects of silicon and water vapour on corrosion of Fe–20Cr and Fe–20Cr–20Ni alloys in CO2 at 650 °C. Oxidation of Metals87, 541–573 (2017).CrossRefGoogle Scholar
  40. 40.
    A. M. Huntz, V. Bague, G. Beauplé, et al., Effect of silicon on the oxidation resistance of 9% Cr steels. Applied Surface Science207, 255–275 (2003).CrossRefGoogle Scholar
  41. 41.
    T. D. Nguyen, J. Zhang and D. J. Young, Effects of silicon on high temperature corrosion of Fe–Cr and Fe–Cr–Ni alloys in carbon dioxide. Oxidation of Metals81, 549–574 (2014).CrossRefGoogle Scholar
  42. 42.
    W. Assassa and P. Guiraldenq, Bulk and grain boundary diffusion of 59Fe, 51Cr, and 63Ni in austenitic stainless steel under influence of silicon content. Metal Science12, 123–128 (1978).CrossRefGoogle Scholar
  43. 43.
    T. D. Nguyen, J. Zhang and D. J. Young, Effect of Mn on oxide formation by Fe–Cr and Fe–Cr–Ni alloys in dry and wet CO2 gases at 650 °C. Corrosion Science112, 110–127 (2016).CrossRefGoogle Scholar
  44. 44.
    W. Gust, M. B. Hintz, A. Loddwg, H. Odelius and B. Predel, Impurity diffusion of Al in Ni single crystals studied by secondary ion mass spectrometry (SIMS). Physica Status Solidi (a)64, 187–194 (1981).CrossRefGoogle Scholar
  45. 45.
    H. J. Grabke, Oxidation of NiAl and FeAl. Intermetallics7, 1153–1158 (1999).CrossRefGoogle Scholar
  46. 46.
    E. Airiskallio, E. Nurmi, M. H. Heinonen, et al., High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: the role of Cr as a chemically active element. Corrosion Science52, 3394–3404 (2010).CrossRefGoogle Scholar
  47. 47.
    I. A. Kvernes and P. Kofstad, The oxidation behavior of some Ni–Cr–Al alloys at high temperatures. Metallurgical Transactions3, 1511–1519 (1972).CrossRefGoogle Scholar
  48. 48.
    P. Hancock, R. C. Hurst, The mechanical properties and breakdown of surface oxide films at elevated temperatures, in Advances in Corrosion Science and Technology: Volume 4, eds. M. G. Fontana and R. W. Staehle, (Springer, Boston, 1974), pp. 1–84.Google Scholar
  49. 49.
    D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Amsterdam, 2016).Google Scholar
  50. 50.
    J. Robertson and M. I. Manning, Limits to adherence of oxide scales. Materials Science and Technology6, 81–92 (1990).CrossRefGoogle Scholar
  51. 51.
    R. C. Lobb, J. A. Sasse and H. E. Evans, Dependence of oxidation behaviour on silicon content of 20%Cr austenitic steels. Materials Science and Technology5, 828–834 (1989).CrossRefGoogle Scholar
  52. 52.
    T. Gheno, D. Monceau, J. Zhang and D. J. Young, Carburisation of ferritic Fe–Cr alloys by low carbon activity gases. Corrosion Science53, 2767–2777 (2011).CrossRefGoogle Scholar
  53. 53.
    D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang and J. M. Cairney, Penetration of protective chromia scales by carbon. Scripta Materialia77, 29–32 (2014).CrossRefGoogle Scholar
  54. 54.
    M. Hänsel, C. A. Boddington and D. J. Young, Internal oxidation and carburisation of heat-resistant alloys. Corrosion Science45, 967–981 (2003).CrossRefGoogle Scholar
  55. 55.
    T. D. Nguyen, J. Zhang and D. J. Young, Effects of cerium and manganese on corrosion of Fe–Cr and Fe–Cr–Ni alloys in Ar–20CO2 and Ar–20CO2–20H2O gases at 650°C. Corrosion Science100, 448–465 (2015).CrossRefGoogle Scholar
  56. 56.
    I. E. McCarroll, A. La Fontaine, T. D. Nguyen, et al., Performance of an FeCrAl alloy in a high-temperature CO2 environment. Corrosion Science139, 267–274 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations