Oxidation of 60Si2MnA Steel in Atmospheres Containing Different Levels of Oxygen, Water Vapour and Carbon Dioxide at 700–1000 °C

  • Yisheng R. ChenEmail author
  • Yu Liu
  • Xuanxuan Xu
Original Paper


The oxidation behaviour of the spring steel 60Si2MnA in atmospheres containing 0–21% (volume per cent) O2, < 20 ppm (part per million) to 17%H2O, with some containing 8%CO2, at 700–1000 °C was investigated. The oxide scale thicknesses formed in both 17%H2O–N2 and dry O2-containing atmospheres were less than 6 μm after 20 min of oxidation, significantly smaller than those formed in atmospheres containing both oxygen and water vapour, and the scale structures developed in the three different scenarios were also very different. The scale formed in 17%H2O–N2 contained wustite only, the scale formed in dry O2-containing atmospheres comprised primarily hematite and some magnetite, and that in O2–H2O mixtures developed a multi-layered structure, generally with an innermost Fe2SiO4 + FeO layer, followed by FeO/Fe3O4/Fe2O3 layers towards the scale surface. A preformed oxide scale and the presence of 8%CO2 in the atmosphere had little effects on further steel oxidation. The mechanisms of forming different scale structures are discussed.


60Si2MnA Oxidation Si in steel O2 Water vapour 



  1. 1.
    Chinese National Standard, GB/T 1222—2016: Spring Steels, (2017).Google Scholar
  2. 2.
    M. Assefpour-Dezfuly and A. Brownrigg, Metallurgical Transactions A20A, 1951 (1989).CrossRefGoogle Scholar
  3. 3.
    A. Brownrigg and T. Sritharan, Material Forum10, 58 (1987).Google Scholar
  4. 4.
    M. J. Geldersleeve, Materials Science and Technology7, 307 (1991).CrossRefGoogle Scholar
  5. 5.
    M. Nomura, H. Morimoto and M. Toyama, ISIJ International40, 619 (2000).CrossRefGoogle Scholar
  6. 6.
    D. Li, D. Anghelina, D. Burzic, J. Zamberger, R. Kienreich, H. Schifferi, W. Krieger and E. Kozeschnik, Steel Research International80, 298 (2009).Google Scholar
  7. 7.
    D. Li, D. Anghelina, D. Burzic, W. Krieger and E. Kozeschnik, Steel Research International80, 304 (2009).Google Scholar
  8. 8.
    C. Zhang, Y. Liu, L. Zhou, C. Jiang and J. Xiao, International Journal of Minerals, Metallurgy and Materials19, 116 (2012).CrossRefGoogle Scholar
  9. 9.
    C. Zhang, L. Zhou and Y. Liu, International Journal of Minerals, Metallurgy and Materials20, 720 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Choi and S. Zwaag, ISIJ International52, 549 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Choi and Y. Lee, ISIJ International54, 1682 (2014).CrossRefGoogle Scholar
  12. 12.
    X. Shi, L. Zhao, W. Wang, B. Zeng, L. Zhao, Y. Shan, M. Shen and K. Yang, Transactions of Materials and Heat Treatment34(7), 47 (2013) (in Chinese).Google Scholar
  13. 13.
    Y. Liu, W. Zhang, Q. Tong and L. Wang, ISIJ International54, 1920 (2014).CrossRefGoogle Scholar
  14. 14.
    Y. Liu, W. Zhang, Q. Tong and Q. Sun, International Journal of Iron and Steel Research23, 1316 (2016).CrossRefGoogle Scholar
  15. 15.
    F. Zhao, C. L. Zhang, Q. Xiu, Y. Tan, S. Zhang and Y. Z. Liu, Materials Science Forum817, 132 (2015).CrossRefGoogle Scholar
  16. 16.
    F. Zhao, C. L. Zhang and Y. Z. Liu, Archives of Metallurgy and Materials61, 1715 (2016).CrossRefGoogle Scholar
  17. 17.
    W. A. Pennington, Transactions of the American Society for Metals37, 48 (1946).Google Scholar
  18. 18.
    N. Birks, Decarburization, Vol. 133 (ISI Publication, 1969), p. 1.Google Scholar
  19. 19.
    N. Birks, G. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 1st edn. (Edward Arnold, London, 1983), p. 175; 2nd edn. (Cambridge University Press, Cambridge, 2006), p. 151.Google Scholar
  20. 20.
    R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals59, 433 (2003).CrossRefGoogle Scholar
  21. 21.
    A. Rahmel and J. Tobolski, Werkstoffe und Korrosion16, 662 (1965).CrossRefGoogle Scholar
  22. 22.
    A. Rahmel, Werkstoffe und Korrosion16, 837 (1965).CrossRefGoogle Scholar
  23. 23.
    M. Fukumoto, S. Maeda, S. Hayashi and T. Narita, Tetsu-to-Hagane86, 526 (2000).CrossRefGoogle Scholar
  24. 24.
    A. A. Mouayd, A. Koltsov, E. Sutter and B. Tribollet, Materials Chemistry and Physics143, 996 (2014).CrossRefGoogle Scholar
  25. 25.
    J. Baud, A. Ferrier, J. Manenc and J. Bénard, Oxidation of Metals9, 69 (1975).CrossRefGoogle Scholar
  26. 26.
    Y. R. Chen, X. Xu, and Y. Liu, Oxidation of Metals (2019).Google Scholar
  27. 27.
    F. D. Richardson and J. H. E. Jeffes, Journal of Iron and Steel Institute160, 261 (1948).Google Scholar
  28. 28.
    R. Sydenham, Specifications of Various Experimental Gases (BOC limited, Australia) (2011).Google Scholar
  29. 29.
    R. Y. Chen and W. Y. D. Yuen, ISIJ International45, 52 (2005).CrossRefGoogle Scholar
  30. 30.
    R. Y. Chen and W. Y. D. Yuen, Metallurgical and Materials Transactions A40A, 3091 (2009).CrossRefGoogle Scholar
  31. 31.
    R. Y. Chen, Unpublished results (2019).Google Scholar
  32. 32.
    B. Pieraggi, Oxidation of Metals27, 177 (1987).CrossRefGoogle Scholar
  33. 33.
    B. Gleeson, R. K. Singh Raman and D. J. Young, CAMP-ISIJ16, 1345 (2003).Google Scholar
  34. 34.
    L. S. Darken, Transactions of the American Institute of Mining and. Metallurgical Engineers150, 157 (1942).Google Scholar
  35. 35.
    C. Wagner, Zeitschrift für Elektrochemie63, 772 (1959).Google Scholar
  36. 36.
    A. Atkinson, Corrosion Science22, 87 (1982).CrossRefGoogle Scholar
  37. 37.
    A. E. Hughes, Corrosion Science22, 103 (1982).CrossRefGoogle Scholar
  38. 38.
    J. S. Sheasby, W. E. Boggs and E. T. Turkdogan, Metal Science18, 127 (1984).CrossRefGoogle Scholar
  39. 39.
    J. Takada and M. Adachi, Journal of Materials Science21, 2133 (1986).CrossRefGoogle Scholar
  40. 40.
    H. Li, J. Zhang and D. J. Young, Materials at High Temperatures28, 297 (2011).CrossRefGoogle Scholar
  41. 41.
    H. Li, J. Zhang and D. J. Young, Corrosion Science54, 127 (2012).CrossRefGoogle Scholar
  42. 42.
    K. Kusabiraki, R. Watanabe, T. Ikehata, M. Takeda, T. Onishi and X. Guo, ISIJ International47, 1329 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Steel Research AustraliaMelbourneAustralia
  2. 2.Zenith Steel Group Co., LimitedChangzhouChina

Personalised recommendations