Oxidation Behavior of Oxide Dispersion-Strengthened W–Ni Alloys

  • V. R. Talekar
  • A. PatraEmail author
  • S. K. Sahoo
Brief Communication


Oxidation behavior (at 1000 °C for 10 h) of 1.0 wt% oxide dispersion-strengthened (nano-Y2O3, Al2O3, La2O3 dispersed) mechanically alloyed (10 h) and sintered (1400 °C, 1500 °C, 2 h) W–Ni alloys has been investigated. Oxidation significantly constrains the application window of W and therefore needs to be counteracted by suitable alloying and dispersion. W–Ni–Y2O3 alloy possesses excellent oxidation resistance at the high sintering temperatures. Moreover, W–Ni–Al2O3 sintered at 1400 °C exhibited no spallation or blistering after 10 h of oxidation. The enhanced oxidation resistance of W–Ni–Y2O3 alloy is attributed to superior densification, oxide-scale adhesion with the matrix phase, reduced volatilization of WO3 owing to NiWO4 and enhanced concentration of Y ions enriched with oxide. The investigation will provide a strategy to fabricate oxidation-resistant alloys by oxide dispersion for high-temperature applications.

Graphic Abstract


ODS W alloy Free energy Oxidation Residual stress 



Financial assistance from TEQIP II NIT Rourkela for the project work is acknowledged. The support of FIST-DST for XRD, residual stress study is also acknowledged.


  1. 1.
    Q. Wei, H. T. Zhang, B. E. Schuster, K. T. Ramesh, R. Z. Valiev, L. J. Kecskes, R. J. Dowding, L. Magness, and K. Cho, Acta Materialia54, 4079 (2006).CrossRefGoogle Scholar
  2. 2.
    E. Lassner, and W. D. Schubert, Tungsten Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, (Kluwer Academic, New York, 1999).Google Scholar
  3. 3.
    T. Wegener, F. Klein, A. Litnovsky, M. Rasinski, J. Brinkmann, F. Koch, and C. Linsmeier, Fusion Engineering and Design124, 183 (2017).CrossRefGoogle Scholar
  4. 4.
    J. R. Davis, ASM Specialty Handbook: Heat-Resistant Materials, (ASM International, Cleveland, 1999).Google Scholar
  5. 5.
    F. Klein, T. Wegener, A. Litnovsky, M. Rasinski, X. Y. Tan, J. Gonzalez-Julian, J. Schmitz, M. Bram, J. W. Coenen, and C. Linsmeier, Nuclear Materials and Energy15, 226 (2018).CrossRefGoogle Scholar
  6. 6.
    A. Litnovsky, T. Wegener, F. Klein, C. Linsmeier, M. Rasinski, A. Kreter, X. Tan, J. Schmitz, Y. Mao, J. W. Coenen, M. Bram, and J. Gonzalez-Julian, Plasma Physics and Controlled Fusion59, 064003 (2017).CrossRefGoogle Scholar
  7. 7.
    F. Koch, S. Kӧppl, and H. Bolt, Journal of Nuclear Materials386–388, 572 (2009).CrossRefGoogle Scholar
  8. 8.
    T. Wegener, F. Klein, A. Litnovsky, M. Rasinski, J. Brinkmann, F. Koch, and C. Linsmeier, Nuclear Materials and Energy9, 394 (2016).CrossRefGoogle Scholar
  9. 9.
    P. Lopez-Ruiz, F. Koch, N. Ordas, S. Lindig, and C. Garca-Rosales, Fusion Engineering and Design86, 1719 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Calvo, K. Schlueter, E. Tejado, G. Pintsuk, N. Ordás, I. Iturriza, R. Neu, J. Y. Pastor, and C. García-Rosales, International Journal of Refractory Metals and Hard Materials73, 29 (2018).CrossRefGoogle Scholar
  11. 11.
    J. Das, G. Appa Rao, S. K. Pabi, M. Sankaranarayana, and T. K. Nandy, International Journal of Refractory Metals and Hard Materials47, 25 (2014).CrossRefGoogle Scholar
  12. 12.
    X. Y. Tan, F. Klein, A. Litnovsky, T. Wegener, J. Schmitz, C. Linsmeier, J. W. Coenen, U. Breuer, M. Rasinski, P. Li, L. M. Luo, and Y. C. Wu, Corrosion Science147, 201 (2019).CrossRefGoogle Scholar
  13. 13.
    Y. Itoh, and Y. Ishiwata, JSME International Journal. Ser. A, Mechanics and Material Engineering39, 429 (1996).CrossRefGoogle Scholar
  14. 14.
    S. Telu, R. Mitra, and S. K. Pabi, Metallurgical and Materials Transactions A46A, 5909 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Patra, M. Meraj, S. Pal, N. Yedla, and S. K. Karak, International Journal of Refractory Metals and Hard Materials58, 57 (2016).CrossRefGoogle Scholar
  16. 16.
    V. R. Talekar, A. Patra, S. K. Sahoo, S. K. Karak, and B. Mishra, International Journal of Refractory Metals and Hard Materials82, 183 (2019).CrossRefGoogle Scholar
  17. 17.
    P. Van Houtte, and L. De Buyser, Acta Metallurgica et Materialia41, 323 (1993).CrossRefGoogle Scholar
  18. 18.
    B. Verlinden, J. Driver, I. Samajdar, R. D. Doherty, and R. W. Cahn, Thermo-Mechanical Processing of Metallic Materials, Series ed., Pergamon Materials Series, (Elsevier, Amsterdam, 2007), p. 187.Google Scholar
  19. 19.
    H. Wawra, Zeitschrift für Metallkunde69, 518 (1978).Google Scholar
  20. 20.
    M. Turker, and T. A. Hughes, Oxidation of Metals44, 505 (1995).CrossRefGoogle Scholar
  21. 21.
    T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta, Oxidation of Metals29, 445 (1988).CrossRefGoogle Scholar
  22. 22.
    K. T. Faber, and A. G. Evans, Acta Metallurgica31, 565 (1983).CrossRefGoogle Scholar
  23. 23.
    D. Ghosh, S. Mukherjee, and S. Das, Surface Engineering30, 524 (2014).CrossRefGoogle Scholar
  24. 24.
    H. E. Evans, International Materials Reviews40, 1 (1995).CrossRefGoogle Scholar
  25. 25.
    R. D. Shannon, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography32, 751 (1976).CrossRefGoogle Scholar
  26. 26.
    L. V. Ramanathan, M. F. Pillis, S. Maria, and C. Fernandes. Journal of Materials Science43, 530 (2008).CrossRefGoogle Scholar
  27. 27.
    S. Telu, A. Patra, M. Sankaranarayana, R. Mitra, and S. K. Pabi, International Journal of Refractory Metals and Hard Materials36, 191 (2013).CrossRefGoogle Scholar
  28. 28.
    P. M. Raj, Bulletin of Materials Science18, 623 (1995).CrossRefGoogle Scholar
  29. 29.
    K. T. Jacob, Journal of Materials Science12, 1647 (1977).CrossRefGoogle Scholar
  30. 30.
    V. A. Levitskii, V. N. Chentsov, Y. Yaskolis, and Y. G. Golovanova, Russian Journal of Physical Chemistry46, 151 (1972).Google Scholar
  31. 31.
    S. Telu, R. Mitra, and S. K. Pabi, International Journal of Refractory Metals and Hard Materials38, 47 (2013).CrossRefGoogle Scholar
  32. 32.
    A. Patra, R. R. Sahoo, S. K. Karak, S. K. Sahoo, International Journal of Refractory Metals and Hard Materials70, 134 (2018).CrossRefGoogle Scholar
  33. 33.
    B. W. Veal, A. P. Paulikas, P. Y. Hou, Nature Materials 5, 349 (2006).CrossRefGoogle Scholar
  34. 34.
    M. F. Stroosnijder, J. D. Sunderkötter, M. J. Cristóbal, H. Jenett, K. Isenbügel, and M. A. Baker, Surface and Coatings Technology83, 205 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Metallurgical and Materials Engineering DepartmentNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations