Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of Oxidation and Alumina Addition on the Physical and Mechanical Properties of Ti/Al2O3 Composites Prepared by Semi-powder Metallurgy Method

  • 295 Accesses

Abstract

The effects of oxidation and alumina addition on the physical and mechanical properties of Ti/Al2O3 composites were studied. The variation in alumina addition used in this study was 0, 10, 20 and 30 wt%. The mixture of Ti and Al2O3 was prepared by semi-powder metallurgy method and then pressed and followed by sintering in air atmosphere at 1000 °C for 2 h. The present results show that the density of the sintered Ti/Al2O3 decreased with increasing alumina amount and oxidation. XRD and EDX analysis indicates that the sample free of alumina produced the oxides in the form of TiO2 on the surface of the composite. With alumina addition, the AlTiO2 oxide appears besides TiO2. This occurrence confirms that the oxidation of Ti increases with increasing the amounts of alumina. The intermetallic phase Ti3Al has appeared in the Ti/Al2O3 composites, which might be due to reduction in alumina by Ti. The oxidation of Ti/Al2O3 composites decreases the hardness and compressive yield strength and hardness values. The decrease in mechanical properties becomes more obvious with increasing the alumina amount which enhanced the formation of oxidation scales after sintering.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Y. Kosaka, K. Faller and S. P. Fox, JOM 56, 31 (2004).

  2. 2.

    M. Peters, J. Kumpfert, C. Ward and C. Leyens, Advanced Engineering Materials 5, 419 (2003).

  3. 3.

    R. Banerjee, P. C. Collins and D. L. Fraser, Advanced Engineering Materials 4, 847 (2002).

  4. 4.

    A. Miklaszewski, International Journal of Refractory Metals and Hard Materials 53, 56 (2015).

  5. 5.

    S. Guo, Journal of the European Ceramic Society 36, 1349 (2016).

  6. 6.

    Y. C. Zhou, D. T. Wan, Y. W. Bao and J. Y. Wang, International Journal of Applied Ceramic Technology 3, 47 (2006).

  7. 7.

    J. F. Zhu, L. Ye and L. H. He, Ceramics International 38, 5475 (2012).

  8. 8.

    C. Guo, J. Zhou, J. Zhao, B. Guo, et al., Applied Surface Science 257, 4398 (2011).

  9. 9.

    K. Morsi, V. V. Patel, S. Naraghi and J. E. Garay, Journal of Materials Processing Technology 196, 236 (2008).

  10. 10.

    H. Dong and T. Bell, Wear 238, 131 (2000).

  11. 11.

    B. G. Wang, D. F. Bliss and M. J. Callahan, Journal of Crystal Growth 311, 443 (2009).

  12. 12.

    S. Feng, Z. Wang, G. P. Shi, W. Ma and L. H. Liu, Rare Metal Materials and Engineering 42, 392 (2013).

  13. 13.

    B. Wang, H. Liu, H. Zhu, C. Huang, et al., Materials Research Express 6, 045028 (2019). https://doi.org/10.1088/2053-1591/aafc06.

  14. 14.

    Z. Wang, K. Xu, Q. Shen, Y. Z. Wang and L. M. Zhang, Journal of Wuhan University of Technology 20, 30 (2005).

  15. 15.

    M. Schmitze, Oxidation of Metals 44, 29 (1995).

  16. 16.

    M. Schmitz-Niederau and M. Schuetze, in Proceedings of 1st International Symposium on Gamma Titanium Aluminides, (TMS, Warrendale, 1995).

  17. 17.

    S. Cabanas-Polo, R. Bermejo, B. Ferrari, et al., Corrosion Science 55, 172 (2012).

  18. 18.

    M. Schmitz-Niederau and M. Schutze, Oxidation of Metals 52, 225 (1999).

  19. 19.

    M. Mahmoudi, H. Maleki-Ghaleh and M. Kavanlouei, Bulletin of Materials Science 38, 351 (2015).

  20. 20.

    A. Arockiasamy, R. M. German, D. F. Heaney, et al. Powder Metallurgy 54, 420 (2011).

  21. 21.

    T. Sadowski, S. Ataya and K. Nakonieczny, Computational Materials Science 45, 624 (2009).

  22. 22.

    C. A. Leon, G. Rodriguez-Ortiz and E. A. Aguilar-Reyes, Materials Science and Engineering: A 526, 106 (2009).

  23. 23.

    K. C. Owen, M. J. Wang, C. Persad and Z. Eliezer, Wear 120, 117 (1987).

  24. 24.

    S.P. Dwidevi, S. Sharma, and R. K. Mishra, IJME 2014, 1 (2014).

  25. 25.

    C. A. Vogiatzis, A. Tsouknidas, D. T. Kountouras and S. Skolianos, Materials and Design 85, 444 (2015).

  26. 26.

    C. Wu, Z. Wang, Q. Q. Li, et al., Journal of Alloys and Compounds 617, 729 (2014).

  27. 27.

    C. Wu, Z. Wang, Q. Q. Li and G. P. Shi, Journal of Asian Ceramic Societies 2, 322 (2014).

  28. 28.

    R. Mangalaraja, B. Chandrasekhar and P. Manohar, Materials Science and Engineering: A 343, 71 (2003).

  29. 29.

    S. Hoffmann, S. T. Norberg and Yoshimur M. Masahiro, Journal of Solid State Chemistry 178, 2897 (2005).

  30. 30.

    P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1988).

  31. 31.

    C. Wu, Y. Li and Z. Wang, Journal of Alloys and Compounds 665, 37 (2016).

  32. 32.

    A. Hannora and S. Ataya, Journal of Alloys and Compounds 658, 222 (2016).

  33. 33.

    J. H. Shin, H. J. Choi and D. H. Bae, Materials Science and Engineering: A 578, 80 (2013).

  34. 34.

    G. Smeggil, A. W. Funkenbusch and N. S. Bornstein, Metallurgical Transactions A 17, 923 (1986).

  35. 35.

    D. A. H. Hanaor and C. C. Sorrell, Journal of Materials Science 46, 855 (2011).

  36. 36.

    A. Ibrahim, W. Mekprasart and W. Pecharapa, Materials Today: Proceedings 4, 6159 (2017).

Download references

Acknowledgements

The authors acknowledge the financial support by Al Imam Mohammad Ibn Saud Islamic University for the internal research Project No. 361405.

Author information

Correspondence to Sabbah Ataya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latief, F.H., Alsaleh, N.A., Alrasheedi, N. et al. Effects of Oxidation and Alumina Addition on the Physical and Mechanical Properties of Ti/Al2O3 Composites Prepared by Semi-powder Metallurgy Method. Oxid Met 92, 561–572 (2019). https://doi.org/10.1007/s11085-019-09923-z

Download citation

Keywords

  • Ti-based composites
  • Oxidation
  • Alumina
  • Composites
  • Mechanical properties