Advertisement

Influence of Temperature on the Oxidation Behaviour of an Austenitic Stainless FeMnSiCrNi Shape Memory Alloy

  • Yuqin Jiao
  • Hongxin Zhang
  • Yuhua WenEmail author
Original Paper
  • 8 Downloads

Abstract

The oxidation behaviour of an austenitic stainless Fe–14.29Mn–5.57Si–8.23Cr–4.96Ni (wt%) shape memory alloy was investigated in air at 600 °C and 700 °C. The results showed that the oxidation process obeyed the parabolic rate law at both temperatures. At 700 °C, the final oxide scales were composed of an outer Mn2O3 layer, a middle Mn3O4 layer, and an inner MnCr2O4 layer. The scale consisted of only Mn2O3 at 600 °C. A composite structure of ferrite and austenite phases was obtained after oxidation at 600 °C and 700 °C because an oxidation-induced Mn-depleted layer formed.

Keywords

FeMnSiCrNi shape memory alloys Oxidation Mn-depleted layer Ferrite layer 

Notes

Acknowledgements

The authors would like to thank the National Nature Science Foundation of China (No. 51671138) for financial support.

References

  1. 1.
    A. Sato, E. Chishima, K. Soma and T. Mori, Acta Materialia 33, 1982 (1177).CrossRefGoogle Scholar
  2. 2.
    H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda and M. Murakami, ISIJ International 30, 1990 (674).CrossRefGoogle Scholar
  3. 3.
    N. Bergeon, S. Kajiwara and T. Kikuchi, Acta Materialia 48, 2000 (4053).CrossRefGoogle Scholar
  4. 4.
    Y. H. Wen, W. Zhang, N. Li, H. B. Peng and L. R. Xiong, Acta Materialia 55, 2007 (6526–6534).CrossRefGoogle Scholar
  5. 5.
    Y. H. Wen, H. B. Peng, P. P. Sun, G. Liu and N. Li, Scripta Materialia 62, 2010 (55–58).CrossRefGoogle Scholar
  6. 6.
    H. B. Peng, Y. H. Wen, G. Liu, C. P. Wang and N. Li, Advanced Engineering Materials 13, 2011 (388–394).CrossRefGoogle Scholar
  7. 7.
    C. A. D. Rovere, J. H. Alano, R. Silva, P. A. P. Nascente, J. Otubo and S. E. Kuri, Materials Chemistry and Physics 133, 2012 (668–673).CrossRefGoogle Scholar
  8. 8.
    C. A. Della Rovere, J. H. Alano, R. Silva, P. A. P. Nascente, J. Otubo and S. E. Kuri, Corrosion Science 57, 2012 (154–161).CrossRefGoogle Scholar
  9. 9.
    A. Paúl, S. Elmrabet, L. C. Alves, M. F. da Silva, J. C. Soares and J. A. Odriozola, Nuclear Instruments and Methods in Physics Research 181, 2001 (394–398).CrossRefGoogle Scholar
  10. 10.
    T. Adachi and G. H. Meier, Oxidation of Metals 27, 1987 (347–366).CrossRefGoogle Scholar
  11. 11.
    F. J. Pérez, M. J. Cristóbal, G. Arnau, M. P. Hierro and J. J. Saura, Oxidation of Metals 55, 2001 (105–118).CrossRefGoogle Scholar
  12. 12.
    F. J. Pérez, M. J. Cristóbal and M. P. Hierro, Oxidation of Metals 55, 2001 (165–175).CrossRefGoogle Scholar
  13. 13.
    Rui Ma, Huabei Peng, Yuhua Wen, Lijun Zhang and Kai Zhao, Corrosion Science 66, 2013 (269–277).CrossRefGoogle Scholar
  14. 14.
    N. Stanford, D. P. Dunne and B. J. Monaghan, Journal of Alloys and Compounds 430, 2007 (107–115).CrossRefGoogle Scholar
  15. 15.
    P. J. Maziasz, R. W. Swindeman, J. P. Shingledecker, K. L. More, B. A. Pint, E. Lara-Curzio and N. D. Evans, Proceedings of 6th International Charles Parsons Turbine Conference. in The Institute of Materials, Minerals, and Mining, eds. A. Strang, R. D. Conroy, W. M. Banks, M. Blackler, J. Leggett, G. M. McColvin, S. Simpson, M. Smith, F. Starr and R. W. Vanstone (Maney Publishing, London, 2003), pp. 1057–1073.Google Scholar
  16. 16.
    F. J. Pe´rez, M. J. Cristo´bal, G. Arnau, M. P. Hierro and J. J. Saura, Oxidation of Metals 55, 2001 (105–108).CrossRefGoogle Scholar
  17. 17.
    Y. J. Liu, L. J. Zhang, Y. Du, et al., Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 33, 2009 (614–623).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringQingdao UniversityQingdaoChina
  2. 2.College of Manufacturing Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations