Oxidation Behavior of the Skutterudite Material Ce0.75Fe3CoSb12

  • Richard DrevetEmail author
  • Lionel Aranda
  • Carine Petitjean
  • Nicolas David
  • Delphine Veys-Renaux
  • Patrice Berthod
Original Paper


A thermoelectric generator is a powerful system used to produce electricity by the action of heat. The development of nanostructured thermoelectric materials is widespread with the objective to improve their efficiency. However, if these materials are used at high temperatures under oxidative atmosphere (e.g., in air), they may suffer degradation in service, drastically decreasing their lifespan. This work investigates the oxidation behavior of an innovative skutterudite material made of cerium, iron, cobalt and antimony (Ce0.75Fe3CoSb12) either microstructured or nanostructured. For that purpose, several oxidation experiments are carried out under a flow of synthetic air at 650 K (15 h, 50 h and 100 h). The oxide layers formed on surface are observed, and their characteristics (chemical composition, thickness, structure) are compared to those obtained with microstructured Ce0.75Fe3CoSb12 samples. As a result, it is observed that the nanostructuring of the skutterudite materials slightly slow down the oxidation reactions in air. Consequently, the nanostructured Ce0.75Fe3CoSb12 is established to be a promising thermoelectric material for use in oxidative environments.


Thermoelectric material Skutterudite Nanostructuring Oxidation 



The French National Research Agency (ANR) is gratefully acknowledged for the financial support in the project Nanoskut (ANR-12-PRGE-0008-01).


  1. 1.
    M. Rull-Bravo, A. Moure, J. F. Fernandez and M. Martin-Gonzalez, RSC Advances 5, 2015 (41653).CrossRefGoogle Scholar
  2. 2.
    K. Salzgeber, P. Prenninger, A. Grytsiv, P. Rogl and E. Bauer, Journal of Electronic Materials 39, (9), 2010 (2074).CrossRefGoogle Scholar
  3. 3.
    J. Q. Guo, H. Y. Geng, T. Ochi, et al., Journal of Electronic Materials 41, (6), 2012 (1036).CrossRefGoogle Scholar
  4. 4.
    J. Zhang, B. Xu, L. M. Wang, et al., Applied Physics Letters 98, (7), 2011 (072109).CrossRefGoogle Scholar
  5. 5.
    D. Zhao, M. Zuo, J. Leng and H. Geng, Intermetallics 40, 2013 (71).CrossRefGoogle Scholar
  6. 6.
    W. Liu, Q. Jie, H. S. Kim and Z. Ren, Acta Materialia 87, 2015 (357).CrossRefGoogle Scholar
  7. 7.
    X. Shi, J. Yang, J. R. Salvador, et al., Journal of the American Chemical Society 133, (20), 2011 (7837).CrossRefGoogle Scholar
  8. 8.
    X. Shi, S. Bai, L. Xi, et al., Journal of Materials Research 26, (15), 2011 (1745).CrossRefGoogle Scholar
  9. 9.
    E. Alleno, D. Berardan, C. Godart, et al., Physica B 383, 2006 (103).CrossRefGoogle Scholar
  10. 10.
    D. Berardan, E. Alleno, C. Godart, O. Rouleau and J. Rodriguez-Carvajal, Materials Research Bulletin 40, 2005 (537).CrossRefGoogle Scholar
  11. 11.
    D. Berardan, C. Godart, E. Alleno, E. Leroy and P. Rogl, Journal of Alloys and Compounds 350, 2003 (30).CrossRefGoogle Scholar
  12. 12.
    M. S. Toprak, C. Stiewe, D. Platzek, et al., Advanced Functional Materials 14, (12), 2004 (1189).CrossRefGoogle Scholar
  13. 13.
    J. L. Mi, T. J. Zhu, X. B. Zhao and J. Ma, Journal of Applied Physics 101, (5), 2007 (054314).CrossRefGoogle Scholar
  14. 14.
    G. Joshi, H. Lee, Y. Lan, et al., Nano Letters 8, (12), 2008 (4670).CrossRefGoogle Scholar
  15. 15.
    P. Steyer, A. Mege, D. Pech, et al., Surface & Coatings Technology 202, (11), 2008 (2268).CrossRefGoogle Scholar
  16. 16.
    V. Savchuk, A. Boulouz, S. Chakraborty, J. Schumann and H. Vinzelberg, Journal of Applied Physics 92, (9), 2002 (5319).CrossRefGoogle Scholar
  17. 17.
    R. Hara, S. Inoue, H. T. Kaibe and S. Sano, Journal of Alloys and Compounds 349, (1–2), 2003 (297).CrossRefGoogle Scholar
  18. 18.
    E. Alleno, M. Gaborit, V. Ohorodniichuk, B. Lenoir and O. Rouleau, Journal of Electronic Materials 42, (7), 2013 (1835).CrossRefGoogle Scholar
  19. 19.
    E. Alleno, E. Zehani, M. Gaborit, et al., Journal of Alloys and Compounds 692, 2017 (676).CrossRefGoogle Scholar
  20. 20.
    P. Qiu, X. Xia, X. Huang, et al., Journal of Alloys and Compounds 612, 2014 (365).CrossRefGoogle Scholar
  21. 21.
    B. V. Mahesh, R. K. Singh Raman and C. C. Koch, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 46, 2015 (1814).CrossRefGoogle Scholar
  22. 22.
    H. Benhayoune, N. Dumelié and G. Balossier, Thin Solid Films 493, (1–2), 2005 (113).CrossRefGoogle Scholar
  23. 23.
    W. L. Bragg, Philosophical Magazine 40, (236), 1920 (169).Google Scholar
  24. 24.
    S. Singh, V. Gupta, B. C. Yadav, P. Tandon and A. K. Singh, Sensors & Actuators, B: Chemical 195, 2014 (373).CrossRefGoogle Scholar
  25. 25.
    A. Ahmed and S. Han, Journal of Alloys and Compounds 686, 2016 (540).CrossRefGoogle Scholar
  26. 26.
    J. Leszczynski, K. T. Wojciechowski and A. L. Malecki, Journal of Thermal Analysis and Calorimetry 105, 2011 (211).CrossRefGoogle Scholar
  27. 27.
    D. K. Shin, I. H. Kim, K. H. Park, S. Lee and W. S. Seo, Journal of Electronic Materials 44, (6), 2015 (1858).CrossRefGoogle Scholar
  28. 28.
    X. Xia, P. Qiu, X. Huang, et al., Journal of Electronic Materials 43, (6), 2014 (1639).CrossRefGoogle Scholar
  29. 29.
    C. Zhu, X. Zhao, Y. Chen, Y. Zhao, P. Xiao, I. S. Molchan and G. E. Thompson, Oxidation of Metals 85, (3–4), 2016 (391).CrossRefGoogle Scholar
  30. 30.
    R. W. Balluffi, Metallurgical Transactions A, Physical Metallurgy and Materials Science A 13, (12), 1982 (2069).CrossRefGoogle Scholar
  31. 31.
    R. W. Balluffi, Metallurgical Transactions B, Proceedings of Metallurgical B. 13, (4), 1982 (527).CrossRefGoogle Scholar
  32. 32.
    R. A. De Souza, M. J. Pietrowski, U. Anselmi-Tamburini, et al., Physical Chemistry Chemical Physics: PCCP 10, 2008 (2067).CrossRefGoogle Scholar
  33. 33.
    R. K. Singh Raman and R. K. Gupta, Corrosion Science 51, (2), 2009 (316).CrossRefGoogle Scholar
  34. 34.
    R. K. Singh Raman, R. K. Gupta and C. C. Koch, Philosophical Magazine A 90, (23), 2010 (3233).CrossRefGoogle Scholar
  35. 35.
    A. Atkinson, Reviews of Modern Physics 57, (2), 1985 (437–470).CrossRefGoogle Scholar
  36. 36.
    R. A. Andrievski, Journal Materials Science 49, 2014 (1449–1460).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Jean Lamour, UMR 7198CNRS - Université de LorraineVandoeuvre-lès-NancyFrance

Personalised recommendations