High-Temperature Corrosion of Ti–46Al–6Nb–0.5W–0.5Cr–0.3Si–0.1C Alloy in N2/0.1%H2S Gas
- 8 Downloads
Abstract
Ti–46Al–6Nb–0.5W–0.5Cr–0.3Si–0.1C alloy was corroded at 800–1100 °C for 200 h in N2/0.1%H2S gas to characterize its corrosion behavior in an aggressive H2S-containing environment. The alloy displayed superior corrosion resistance because Ti and Al preferentially reacted with impurity oxygen in the gas to form TiO2 and Al2O3. It corroded primarily by outward diffusion of Ti, Al, W, and Cr in addition to inward transport of sulfur, nitrogen, and oxygen. Scales were adherent and consisted of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner (TiO2, Al2O3)-mixed layer. TiN and Ti2AlN formed at the scale/matrix interface where sulfur, Nb, W, and Cr segregated.
Keywords
Titanium aluminides TiAl H2S-corrosion Oxidation SulfidationNotes
Acknowledgements
This work was supported by the project “Development of the High-Efficiency Low-Emission Future Energy Production Technology (EO15580)” of National Research Council of Science and Technology (NST) grant by the Korea government (MSIP) (No. CRC-15-07-KIER).
References
- 1.Y. W. Kim and S. L. Kim, Journal of Metals 70, 553 (2018).Google Scholar
- 2.S. Y. Park, D. Y. Seo, S. W. Kim, S. E. Kim, J. K. Hong and D. B. Lee, Intermetallics 74, 8 (2016).CrossRefGoogle Scholar
- 3.Y. Shida and H. Anada, Oxidation of Metals 45, 197 (1996).CrossRefGoogle Scholar
- 4.J. Dai, J. Zhu, C. Chen and F. Weng, Journal of Alloys and Compounds 685, 784 (2016).CrossRefGoogle Scholar
- 5.J. W. Fergus, Materials Science and Engineering A 338, 108 (2002).CrossRefGoogle Scholar
- 6.Y. Shida and H. Anada, Corrosion Science 35, 945 (1993).CrossRefGoogle Scholar
- 7.Y. Shida and H. Anada, Materials Transactions JIM 35, 623 (1994).CrossRefGoogle Scholar
- 8.D. B. Lee and S. W. Woo, Metals and Materials International 11, 141 (2005).CrossRefGoogle Scholar
- 9.X. Y. Li and S. Taniguchi, Materials Science and Engineering A 398, 268 (2005).CrossRefGoogle Scholar
- 10.R. John, Sulfidation and mixed gas corrosion of alloys, in Shreir’s Corrosion, 4th edn., eds. R. A. Cottis, M. J. Graham, R. Lindsay, S. B. Lyon, J. A. Richardson, J. D. Scantlebury and F. H. Stott, Vol. 1 (Elsevier, Amsterdam, 2010), pp. 240–271.Google Scholar
- 11.N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-temperature Oxidation of Metals, 2nd ed (Cambridge University Press, England, 2006), pp. 63–204.CrossRefGoogle Scholar
- 12.G. Y. Lai, High-Temperature Corrosion and Materials Applications (ASM International, USA, 2007), pp. 201–234.Google Scholar
- 13.F. Lang, Z. Yu, S. Gedevanishvilic, S. C. Deevic, S. Hayashi and T. Narita, Intermetallics 12, 469 (2004).CrossRefGoogle Scholar
- 14.D. J. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, England, 2008), pp. 455–496.CrossRefGoogle Scholar
- 15.W. Kai, M. T. Chang and C. Y. Bai, Oxidation of Metals 56, 191 (2001).CrossRefGoogle Scholar
- 16.H. L. Du, P. K. Datta, D. Hu and X. Wu, Corrosion Science 49, 2406 (2007).CrossRefGoogle Scholar
- 17.T. Izumi, T. Yoshioka, S. Hayashi and T. Narita, Intermetallics 10, 353 (2002).CrossRefGoogle Scholar
- 18.N. J. Simms, J. F. Norton and T. M. Lowe, Journal de Physique IV 3, 807 (1993).CrossRefGoogle Scholar
- 19.F. H. Froes and C. Suryanarayana, Titanium aluminides, in Physical Metallurgy and Processing of Intermetallic Compounds, eds. N. S. Stoloff and V. K. Sikka (Chapman & Hall, Boca Raton, 1996), pp. 297–350.Google Scholar
- 20.M. Schulte and M. Schütze, Oxidation of Metals 51, 55 (1999).CrossRefGoogle Scholar
- 21.D. Y. Seo, T. D. Nguyen and D. B. Lee, Oxidation of Metals 74, 145 (2010).CrossRefGoogle Scholar
- 22.J. D. Sunderkötter, H. J. Schmutzler, V. A. C. Haanappel, R. Hofman, W. Glatz, H. Clemens and M. F. Stroosnijder, Intermetallics 5, 525 (1997).CrossRefGoogle Scholar
- 23.F. Dettenwanger, E. Schumann, M. Rühle, J. Rakowski and G. H. Meier, Oxidation of Metals 50, 269 (1998).CrossRefGoogle Scholar
- 24.J. M. Rakowski, F. S. Pettit, G. H. Meier, F. Dettenwanger, E. Schumann and M. Rühle, Scripta Metallurgica et Materialia 33, 997 (1995).CrossRefGoogle Scholar
- 25.H. L. Du, A. Aljarany, P. K. Datta and J. S. Burnell-Gray, Corrosion Science 47, 1706 (2005).CrossRefGoogle Scholar
- 26.M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci, Journal of Metals 48(11), 46 (1996).Google Scholar
- 27.S. Becker, A. Rhamel, M. Schorr and M. Schütze, Oxidation of Metals 38, 425 (1992).CrossRefGoogle Scholar
- 28.M. W. Barsoum, M. Ali and T. El-Raghy, Metallurgical and Materials Transactions A 31, 1857 (2000).Google Scholar
- 29.Q. Wang, W. Garkas, A. F. Renteria, C. Leyens, C. Sun and K. Kim, Oxidation behaviour of a Ti2AlN MAX-phase coating, IOP Conference Series: Materials Science and Engineering 18, 082025 (2011).Google Scholar
- 30.W. Lu, C. L. Chen, F. H. Wang, J. P. Lin, G. L. Chen and L. L. He, Scripta Materialia 56, 773 (2007).CrossRefGoogle Scholar
- 31.Z. J. Lin, M. J. Zhuo, M. S. Li, J. Y. Wang and Y. C. Zhou, Scripta Materialia 56, 1115 (2007).CrossRefGoogle Scholar
- 32.R. G. Munro, Journal of the American Ceramic Society 80, 1919 (1997).Google Scholar
- 33.W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd ed (Wiley, New York, 1975), p. 594.Google Scholar
- 34.J. Kumpfert and C. Leyens, in Titanium and Titanium Alloys: Fundamentals and Applications, eds. C. Leyens and M. Peters (Wiley, New York, 2003), p. 66.Google Scholar
- 35.H. J. Grabke, in High Temperature Materials Corrosion in Coal Gasification Atmospheres, ed. J. F. Norton (Elsevier Applied Science Publishers, England, 1984), pp. 59–82.Google Scholar
- 36.D. B. Lee, Y. C. Lee, Y. J. Kim and S. W. Park, Oxidation of Metals 54, 575 (2000).CrossRefGoogle Scholar
- 37.Y. M. Chiang, D. P. Birnie and W. D. Kingery, Physical Ceramics (John Wiley & Sons, New York, 1996), p. 109.Google Scholar