High-Temperature Corrosion of Ti–46Al–6Nb–0.5W–0.5Cr–0.3Si–0.1C Alloy in N2/0.1%H2S Gas

  • Shi Yuke
  • Seong Woong Kim
  • Junhee Hahn
  • Dong Bok LeeEmail author
Original Paper


Ti–46Al–6Nb–0.5W–0.5Cr–0.3Si–0.1C alloy was corroded at 800–1100 °C for 200 h in N2/0.1%H2S gas to characterize its corrosion behavior in an aggressive H2S-containing environment. The alloy displayed superior corrosion resistance because Ti and Al preferentially reacted with impurity oxygen in the gas to form TiO2 and Al2O3. It corroded primarily by outward diffusion of Ti, Al, W, and Cr in addition to inward transport of sulfur, nitrogen, and oxygen. Scales were adherent and consisted of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner (TiO2, Al2O3)-mixed layer. TiN and Ti2AlN formed at the scale/matrix interface where sulfur, Nb, W, and Cr segregated.


Titanium aluminides TiAl H2S-corrosion Oxidation Sulfidation 



This work was supported by the project “Development of the High-Efficiency Low-Emission Future Energy Production Technology (EO15580)” of National Research Council of Science and Technology (NST) grant by the Korea government (MSIP) (No. CRC-15-07-KIER).


  1. 1.
    Y. W. Kim and S. L. Kim, Journal of Metals 70, 553 (2018).Google Scholar
  2. 2.
    S. Y. Park, D. Y. Seo, S. W. Kim, S. E. Kim, J. K. Hong and D. B. Lee, Intermetallics 74, 8 (2016).CrossRefGoogle Scholar
  3. 3.
    Y. Shida and H. Anada, Oxidation of Metals 45, 197 (1996).CrossRefGoogle Scholar
  4. 4.
    J. Dai, J. Zhu, C. Chen and F. Weng, Journal of Alloys and Compounds 685, 784 (2016).CrossRefGoogle Scholar
  5. 5.
    J. W. Fergus, Materials Science and Engineering A 338, 108 (2002).CrossRefGoogle Scholar
  6. 6.
    Y. Shida and H. Anada, Corrosion Science 35, 945 (1993).CrossRefGoogle Scholar
  7. 7.
    Y. Shida and H. Anada, Materials Transactions JIM 35, 623 (1994).CrossRefGoogle Scholar
  8. 8.
    D. B. Lee and S. W. Woo, Metals and Materials International 11, 141 (2005).CrossRefGoogle Scholar
  9. 9.
    X. Y. Li and S. Taniguchi, Materials Science and Engineering A 398, 268 (2005).CrossRefGoogle Scholar
  10. 10.
    R. John, Sulfidation and mixed gas corrosion of alloys, in Shreir’s Corrosion, 4th edn., eds. R. A. Cottis, M. J. Graham, R. Lindsay, S. B. Lyon, J. A. Richardson, J. D. Scantlebury and F. H. Stott, Vol. 1 (Elsevier, Amsterdam, 2010), pp. 240–271.Google Scholar
  11. 11.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-temperature Oxidation of Metals, 2nd ed (Cambridge University Press, England, 2006), pp. 63–204.CrossRefGoogle Scholar
  12. 12.
    G. Y. Lai, High-Temperature Corrosion and Materials Applications (ASM International, USA, 2007), pp. 201–234.Google Scholar
  13. 13.
    F. Lang, Z. Yu, S. Gedevanishvilic, S. C. Deevic, S. Hayashi and T. Narita, Intermetallics 12, 469 (2004).CrossRefGoogle Scholar
  14. 14.
    D. J. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, England, 2008), pp. 455–496.CrossRefGoogle Scholar
  15. 15.
    W. Kai, M. T. Chang and C. Y. Bai, Oxidation of Metals 56, 191 (2001).CrossRefGoogle Scholar
  16. 16.
    H. L. Du, P. K. Datta, D. Hu and X. Wu, Corrosion Science 49, 2406 (2007).CrossRefGoogle Scholar
  17. 17.
    T. Izumi, T. Yoshioka, S. Hayashi and T. Narita, Intermetallics 10, 353 (2002).CrossRefGoogle Scholar
  18. 18.
    N. J. Simms, J. F. Norton and T. M. Lowe, Journal de Physique IV 3, 807 (1993).CrossRefGoogle Scholar
  19. 19.
    F. H. Froes and C. Suryanarayana, Titanium aluminides, in Physical Metallurgy and Processing of Intermetallic Compounds, eds. N. S. Stoloff and V. K. Sikka (Chapman & Hall, Boca Raton, 1996), pp. 297–350.Google Scholar
  20. 20.
    M. Schulte and M. Schütze, Oxidation of Metals 51, 55 (1999).CrossRefGoogle Scholar
  21. 21.
    D. Y. Seo, T. D. Nguyen and D. B. Lee, Oxidation of Metals 74, 145 (2010).CrossRefGoogle Scholar
  22. 22.
    J. D. Sunderkötter, H. J. Schmutzler, V. A. C. Haanappel, R. Hofman, W. Glatz, H. Clemens and M. F. Stroosnijder, Intermetallics 5, 525 (1997).CrossRefGoogle Scholar
  23. 23.
    F. Dettenwanger, E. Schumann, M. Rühle, J. Rakowski and G. H. Meier, Oxidation of Metals 50, 269 (1998).CrossRefGoogle Scholar
  24. 24.
    J. M. Rakowski, F. S. Pettit, G. H. Meier, F. Dettenwanger, E. Schumann and M. Rühle, Scripta Metallurgica et Materialia 33, 997 (1995).CrossRefGoogle Scholar
  25. 25.
    H. L. Du, A. Aljarany, P. K. Datta and J. S. Burnell-Gray, Corrosion Science 47, 1706 (2005).CrossRefGoogle Scholar
  26. 26.
    M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci, Journal of Metals 48(11), 46 (1996).Google Scholar
  27. 27.
    S. Becker, A. Rhamel, M. Schorr and M. Schütze, Oxidation of Metals 38, 425 (1992).CrossRefGoogle Scholar
  28. 28.
    M. W. Barsoum, M. Ali and T. El-Raghy, Metallurgical and Materials Transactions A 31, 1857 (2000).Google Scholar
  29. 29.
    Q. Wang, W. Garkas, A. F. Renteria, C. Leyens, C. Sun and K. Kim, Oxidation behaviour of a Ti2AlN MAX-phase coating, IOP Conference Series: Materials Science and Engineering 18, 082025 (2011).Google Scholar
  30. 30.
    W. Lu, C. L. Chen, F. H. Wang, J. P. Lin, G. L. Chen and L. L. He, Scripta Materialia 56, 773 (2007).CrossRefGoogle Scholar
  31. 31.
    Z. J. Lin, M. J. Zhuo, M. S. Li, J. Y. Wang and Y. C. Zhou, Scripta Materialia 56, 1115 (2007).CrossRefGoogle Scholar
  32. 32.
    R. G. Munro, Journal of the American Ceramic Society 80, 1919 (1997).Google Scholar
  33. 33.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd ed (Wiley, New York, 1975), p. 594.Google Scholar
  34. 34.
    J. Kumpfert and C. Leyens, in Titanium and Titanium Alloys: Fundamentals and Applications, eds. C. Leyens and M. Peters (Wiley, New York, 2003), p. 66.Google Scholar
  35. 35.
    H. J. Grabke, in High Temperature Materials Corrosion in Coal Gasification Atmospheres, ed. J. F. Norton (Elsevier Applied Science Publishers, England, 1984), pp. 59–82.Google Scholar
  36. 36.
    D. B. Lee, Y. C. Lee, Y. J. Kim and S. W. Park, Oxidation of Metals 54, 575 (2000).CrossRefGoogle Scholar
  37. 37.
    Y. M. Chiang, D. P. Birnie and W. D. Kingery, Physical Ceramics (John Wiley & Sons, New York, 1996), p. 109.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shi Yuke
    • 1
  • Seong Woong Kim
    • 2
  • Junhee Hahn
    • 3
  • Dong Bok Lee
    • 1
    Email author
  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonSouth Korea
  2. 2.Titanium DepartmentKorea Institute of Materials ScienceChangwonSouth Korea
  3. 3.Center for Energy Materials MetrologyKorea Research Institute of Standards and ScienceDaejonSouth Korea

Personalised recommendations