Effect of Tempering on the Oxidation Behaviour of a Roll-Grade High-Speed Steel During Thermal Cycling

  • Mauro J. Gaona-Martínez
  • Laura N. Guajardo-López
  • Juan A. Pérez-Patiño
  • Javier H. Ramírez-Ramírez
  • Francisco A. Pérez-González
  • Rafael Colás
  • Nelson F. Garza-Montes-de-OcaEmail author
Original Paper


The oxidation characteristics of a roll-grade high-speed steel with different tempering heat treatments were studied under thermal cycling conditions at 650 °C in laboratory dry air. The oxidation kinetics of the steel could be described by the parabolic rate law and were a function the tempering temperature. Characterization of the oxide scales was conducted by X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. It was found that the chemical composition of the oxide scales depended on the tempering temperature and favoured the formation of Fe3O4, Fe2O3, (Fe,Cr)3O4 and (Fe,Cr)2O3. Thermal cycling of the steel promoted the fracture and spallation of the oxide scales formed, causing increments in the oxidation rates. The steel also experienced a progressive reduction in its hardness with the number of thermal cycles applied, which could be also related to the thermal process. The results of this investigation are explained in terms of the microstructural evolution of the alloy due to variations in the tempering temperature.


High-speed steel Tempering Cyclic oxidation Carbides 



The authors would like to thank the Mexican National Council for Science and Technology (CONACYT) for the support given to Project 238232, the Mexican Program for Lecturer Formation and Development (PRODEP) and Universidad Autónoma de Nuevo León (UANL) for the facilities provided to develop this investigation.


  1. 1.
    N. F. Garza-Montes-de-Oca and W. M. Rainforth, Wear 267, 2009 (441).CrossRefGoogle Scholar
  2. 2.
    M. Pellizzari, A. Molinari and G. Straffelini, Wear 259, 2005 (1281).CrossRefGoogle Scholar
  3. 3.
    R. Colás, J. Ramírez, I. Sandoval, J. C. Morales and L. A. Leduc, Wear 230, 1999 (56).CrossRefGoogle Scholar
  4. 4.
    J. H. Ramírez-Ramírez, R. Colás and N. F. Garza-Montes-de-Oca, Journal of Iron and Steel Research, International 20, 2013 (122).CrossRefGoogle Scholar
  5. 5.
    N. F. Garza-Montes-de-Oca, R. Colás and W. M. Rainforth, Oxidation of Metals 76, 2011 (451).CrossRefGoogle Scholar
  6. 6.
    A. Bedolla-Jacuinde, R. Correa, I. Mejia, J. G. Quezada and W. M. Rainforth, Wear 263, 2007 (808).CrossRefGoogle Scholar
  7. 7.
    O. Joos, C. Boher, C. Vergne, C. Gaspard, T. Nylen and F. Rezai-Aria, Wear 263, 2007 (198).CrossRefGoogle Scholar
  8. 8.
    Y. Yin, J. Sun, S. Teng and C. Niu, Oxidation of Metals 86, 2016 (45).CrossRefGoogle Scholar
  9. 9.
    N. F. Garza-Montes-de-Oca, R. Colás and W. M. Rainforth, Engineering Failure Analysis 18, 2011 (1576).CrossRefGoogle Scholar
  10. 10.
    H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, (Butterworth-Heinemann, Oxford, 2017).Google Scholar
  11. 11.
    G. Hoyle, High-speed steels. Butterworths, Borough Green, Sevenoaks, Kent TN 15 8 PQ, 1988 1988.Google Scholar
  12. 12.
    Angang Ning, Wenwen Mao, Xichun Chen, Hanjie Guo and Jing Guo, Metals 7, 2017 (70).CrossRefGoogle Scholar
  13. 13.
    M. Nurbanasari, P. Tsakiropoulos and E. J. Palmiere, ISIJ International 54, 2014 (1667).CrossRefGoogle Scholar
  14. 14.
    A. S. Zav’yalov and M. I. Senchenko, Metal Science and Heat Treatment of Metals 1, 1959 (3).CrossRefGoogle Scholar
  15. 15.
    R. L. Corral, R. Colas and A. Pérez, Journal of Materials Processing Technology 153, 2004 (886).CrossRefGoogle Scholar
  16. 16.
    H. H. Kim, J. W. Lim and J. J. Lee, ISIJ International 43, 2003 (1983).CrossRefGoogle Scholar
  17. 17.
    N. F. Garza-Montes-de-Oca, J. H. Ramírez-Ramírez, I. Alvarez-Elcoro, W. M. Rainforth and R. Colás, Oxidation of Metals 80, 2013 (191).CrossRefGoogle Scholar
  18. 18.
    Q. Zhu, H. T. Zhu, A. K. Tieu, M. Reid and L. C. Zhang, Corrosion Science 52, 2010 (2707).CrossRefGoogle Scholar
  19. 19.
    A. Mondière, V. Déneux, N. Binot and D. Delagnes, Materials Characterization 140, 2018 (103).CrossRefGoogle Scholar
  20. 20.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
  21. 21.
    D. Laverde, T. Gomez-Acebo and F. Castro, Corrosion Science 46, 2004 (613).CrossRefGoogle Scholar
  22. 22.
    L. Sanchez, M. P. Hierro and F. J. Perez, Oxidation of Metals 71, 2009 (173).CrossRefGoogle Scholar
  23. 23.
    N. F. Garza-Montes-de-Oca, R. Colás and W. M. Rainforth, Oxidation of Metals 76, 2011 (149).CrossRefGoogle Scholar
  24. 24.
    M. A. Rehan, A. Medvedeva, B. Högman, L. E. Svensson and L. Karlsson, Steel Research International 87, 2016 (1609).CrossRefGoogle Scholar
  25. 25.
    J. A. Da Cruz Junior and D. B. Santos, Journal of Materials Research and Technology 2, 2013 (93).CrossRefGoogle Scholar
  26. 26.
    W. Rong, H. O. Andrén, H. Wisell and G. L. Dunlop, Acta Metallurgica et Materialia 40, 1992 (1727).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mauro J. Gaona-Martínez
    • 1
  • Laura N. Guajardo-López
    • 1
  • Juan A. Pérez-Patiño
    • 1
  • Javier H. Ramírez-Ramírez
    • 1
  • Francisco A. Pérez-González
    • 1
  • Rafael Colás
    • 1
  • Nelson F. Garza-Montes-de-Oca
    • 1
    Email author
  1. 1.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations