Advertisement

A Novel Thermomechanical Processing Route to Fabricate ODS Ferritic Stainless Steel Interconnects and Their Oxidation Behavior

  • Ajay Kumar
  • Ranjit BauriEmail author
Original Paper
  • 41 Downloads

Abstract

Oxide dispersion-strengthened AISI 430 alloy was fabricated using a novel thermomechanical processing route for potential application as interconnect in solid oxide fuel cells. The process can be termed as reverse friction deposition wherein the final product is formed by curling up as a seamless tube on the surface of the parent rod which is used as a consumable tool in a friction stir welding machine. The oxide dispersion alloy is obtained by incorporating 8 mol% yttria-stabilized zirconia powder in drilled holes in the rod. The number and spatial distribution of holes were optimized for a sound product and uniform distribution of the particles. The oxidation behavior of the formed tube was remarkably different from that of the parent rod. The dispersion of zirconia particles on the outer surface of the tube retards Cr diffusion owing to their grain boundary pinning effect which also refines the Fe2O3 crystal size. (Cr, Mn)O4 spinel, which is known to be electrically conductive, formed in the inner surface of the tube. The tube thus can be used as an interconnect in tubular solid oxide fuel cells and potentially prevent Cr poisoning of the cathode.

Graphical Abstract

Keywords

Friction deposition ODS alloy Oxidation Interconnect Solid oxide fuel cell 

References

  1. 1.
    S. C. Singhal and K. Kendall, High-temperature solid oxide fuel cells: fundamentals, design, and applications. (Elsevier Science, Oxford, 2003).Google Scholar
  2. 2.
    R. M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003).CrossRefGoogle Scholar
  3. 3.
    S. Singhal, Advances in solid oxide fuel cell technology. Solid State Ionics. 135, 305–313 (2000).CrossRefGoogle Scholar
  4. 4.
    W. Z. Zhu and S. C. Deevi, Development of interconnect materials for solid oxide fuel cells. Mater. Sci. Eng. A. 348, 227–243 (2003).CrossRefGoogle Scholar
  5. 5.
    P. Kofstad and R. Bredesen. High temperature corrosion in SOFC environments. Solid State Ionics. 52, 69–75 (1992).CrossRefGoogle Scholar
  6. 6.
    N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci. 72, 141–337 (2015).CrossRefGoogle Scholar
  7. 7.
    Z. Yang, Recent advances in metallic interconnects for solid oxide fuel cells. Int. Mater. Rev. 53, 39–54 (2008).CrossRefGoogle Scholar
  8. 8.
    J. Wu and X. Liu, Recent development of SOFC metallic interconnect. J. Mater. Sci. Technol. 26, 293–305 (2010).CrossRefGoogle Scholar
  9. 9.
    M. C. Tucker, Progress in metal-supported solid oxide fuel cells: a review. J. Power Sources. 195, 4570–4582 (2010).CrossRefGoogle Scholar
  10. 10.
    P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser, and W. J. Quadakkers, Oxidation induced lifetime limits of chromia forming ferritic interconnector steels. J. Fuel Cell Sci. Technol. 1, 30–34 (2004).CrossRefGoogle Scholar
  11. 11.
    I. Antepara, I. Villarreal, L. M. Rodríguez-Martínez, N. Lecanda, U. Castro, and A. Laresgoiti, Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs. J. Power Sources. 151, 103–107 (2005).CrossRefGoogle Scholar
  12. 12.
    P. Piccardo, S. Anelli, V. Bongiorno, R. Spotorno, L. Repetto, and P. Girardon, K44M ferritic stainless steel as possible interconnect material for SOFC stack operating at 600 C: characterization of the oxidation behaviour at early working stages. Int. J. Hydrogen Energy. 40, 3726–3738 (2015).CrossRefGoogle Scholar
  13. 13.
    T. Brylewski, M. Nanko, T. Maruyama, and K. Przybylski, Application of Fe–16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics. 143, 131–150 (2001).CrossRefGoogle Scholar
  14. 14.
    J. Froitzheim, G. H. Meier, L. Niewolak et al, Development of high strength ferritic steel for interconnect application in SOFCs. J. Power Sources. 178, 163–173 (2008).CrossRefGoogle Scholar
  15. 15.
    Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J. Electrochem. Soc. 150, A1188–A1201 (2003).CrossRefGoogle Scholar
  16. 16.
    W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Metallic interconnectors for solid oxide fuel cells—a review. Mater. High Temp. 20, 115–127 (2003).Google Scholar
  17. 17.
    N. Shaigan, W. Qu, D. G. Ivey, and W. Chen, A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J. Power Sources. 195, 1529–1542 (2010).CrossRefGoogle Scholar
  18. 18.
    P. Piccardo, S. Chevalier, R. Molins et al, Metallic interconnects for SOFC: characterization of their corrosion resistance in hydrogen/water atmosphere and at the operating temperatures of differently coated metallic alloys. Surf. Coatings Technol. 201, 4471–4475 (2006).CrossRefGoogle Scholar
  19. 19.
    S. Molin, B. Kusz, M. Gazda, and P. Jasinski, Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures. J. Power Sources. 181, 31–37 (2008).CrossRefGoogle Scholar
  20. 20.
    R. Sachitanand, M. Sattari, J. E. Svensson, and J. Froitzheim, Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. Int. J. Hydrogen Energy. 38, 15328–15334 (2013).CrossRefGoogle Scholar
  21. 21.
    L. Cooper, S. Benhaddad, A. Wood, and D. G. Ivey, The effect of surface treatment on the oxidation of ferritic stainless steels used for solid oxide fuel cell interconnects. J. Power Sources. 184, 220–228 (2008).CrossRefGoogle Scholar
  22. 22.
    T. Kaito, T. Narita, S. Ukai, and Y. Matsuda, High temperature oxidation behavior of ODS steels. J. Nucl. Mater. 329–333, 1388–1392 (2004).CrossRefGoogle Scholar
  23. 23.
    J. W. Fergus, Metallic interconnects for solid oxide fuel cells. Mater. Sci. Eng. A. 397, 271–283 (2005).CrossRefGoogle Scholar
  24. 24.
    S. Kim and Y. Yoo, Continuous dynamic recrystallization of AISI 430 ferritic stainless steel by hot torsion deformation. Mater. Sci. Forum. 475–479, 145–148 (2005).Google Scholar
  25. 25.
    J. K. Tien and F. S. Pettit. Mechanism of oxide adherence on Fe–25Cr–4Al (Y or Sc) alloys. Metall. Trans. 3, 1587–1599 (1972).CrossRefGoogle Scholar
  26. 26.
    S. Roure, F. Czerwinski, and A. Petric. Influence of CeO 2-coating on the high-temperature oxidation of chromium. Oxid. Met. 42, 75–102 (1994).Google Scholar
  27. 27.
    K. Przybylski and G. J. Yurek, The influence of implanted yttrium on the mechanisms of growth of chromia scales. Mater. Sci. Forum. 43, 1–74 (1989).CrossRefGoogle Scholar
  28. 28.
    C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, The influence of grain-boundary segregation of Y in Cr2O3 on the oxidation of Cr metal. Oxid. Met. 34, 173–200 (1990).CrossRefGoogle Scholar
  29. 29.
    N. Patibandla, T. A. Ramanarayanan, and F. Cosandey, Effect of ion-implanted cerium on the growth rate of chromia scales on Ni–Cr alloys. J. Electrochem. Soc. 138, 2176–2184 (1991).CrossRefGoogle Scholar
  30. 30.
    Z. Yang, J. S. Hardy, M. S. Walker, G. Xia, S. P. Simner, and J. W. Stevenson, Structure and conductivity of thermally grown scales on ferritic Fe–Cr–Mn steel for SOFC interconnect applications. J. Electrochem. Soc. 151, A1825 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations