Advertisement

Effect of Nanostructured Surface on the Corrosion Behavior of RAFM Steels

  • Yanhong Lu
  • Maolong Zhang
  • Weibao Tang
  • Yuanyuan Song
  • Lijian RongEmail author
Original Paper
  • 35 Downloads

Abstract

This study investigated the effect of a preformed nanostructured surface on the corrosion behavior of 9Cr2WVTa reduced activation ferritic/martensitic (RAFM) steel and 9Cr+AlSi steel (9Cr2WVTa with the 0.12 wt.% Al and 0.68 wt.% Si addition) at 700 °C in air and at 550 °C in liquid lead–bismuth eutectic (LBE) alloys. The nanostructured surface layer was fabricated by surface mechanical rolling treatment (SMRT). The results showed that the SMRT 9Cr+AlSi sample has a lower oxidation rate than the SMRT 9Cr2WVTa steel at 700 °C in air, due to the faster diffusion rates of Al, Cr and Si in the nanostructure and a higher diffusion driving force increased by Cr. The SMRT 9Cr+AlSi sample at 550 °C in oxygen-saturated LBE alloy also had a higher oxidation rate, due to the formation of Al and Si oxides in the internal oxide layer.

Graphical Abstract

Keywords

Nanostructured surface RAFM Corrosion LBE alloy 

Notes

Acknowledgements

This work was financially supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91226204) and the Strategic Priority Research Program of the Chinese Academy of Science (No. XDA03010304).

References

  1. 1.
    R. Klueh and A. Nelson, Journal of Nuclear Materials 371, (1), 2007 (37–52).CrossRefGoogle Scholar
  2. 2.
    H. Tanigawa, K. Shiba, H. Sakasegawa, T. Hirose and S. Jitsukawa, Fusion Engineering and Design 86, (9), 2011 (2549–2552).CrossRefGoogle Scholar
  3. 3.
    A. Kohyama, Y. Kohno, K. Asakura and H. Kayano, Journal of Nuclear Materials 212, 1994 (684–689).CrossRefGoogle Scholar
  4. 4.
    N. Baluc, R. Schäublin, P. Spätig and M. Victoria, Nuclear Fusion 44, (1), 2004 (56).CrossRefGoogle Scholar
  5. 5.
    G. Butterworth, Journal of Nuclear Materials 179, 1991 (135–142).CrossRefGoogle Scholar
  6. 6.
    R. Klueh and E. Bloom, Nuclear Engineering and Design. Fusion 2, (3), 1985 (383–389).CrossRefGoogle Scholar
  7. 7.
    D. Dulieu, K. Tupholme and G. Butterworth, Journal of Nuclear Materials 141, 1986 (1097–1101).CrossRefGoogle Scholar
  8. 8.
    M. Tamura, H. Hayakawa, M. Tanimura, A. Hishinuma and T. Kondo, Journal of Nuclear Materials 141, 1986 (1067–1073).CrossRefGoogle Scholar
  9. 9.
    T. Noda, F. Abe, H. Araki and M. Okada, Journal of Nuclear Materials 141, 1986 (1102–1106).CrossRefGoogle Scholar
  10. 10.
    Z. Lu, R. Faulkner, N. Riddle, F. Martino and K. Yang, Journal of Nuclear Materials 386, 2009 (445–448).CrossRefGoogle Scholar
  11. 11.
    H. Qun-ying, L. Chun-jing, L. Yan-fen, L. Shao-jun, W. Yi-can, L. Jian-gang, W. Fa-rong, J. Xin, S. Yi-yin and Y. Jin-nan, Chinese Journal of Nuclear Science and Engineering 1, 2007 (008).Google Scholar
  12. 12.
    J. S. Dunning, D. E. Alman and J. C. Rawers, Oxidation of Metals 57, (5), 2002 (409–425).CrossRefGoogle Scholar
  13. 13.
    T. Ishitsuka, Y. Inoue and H. Ogawa, Oxidation of Metals 61, (1), 2004 (125–142).CrossRefGoogle Scholar
  14. 14.
    S. G. Wang, M. Sun, H. B. Han, K. Long and Z. D. Zhang, Corrosion Science 72, 2013 (64–72).CrossRefGoogle Scholar
  15. 15.
    R. L. Klueh and D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, (ASTM, West Conshohocken, 2001).CrossRefGoogle Scholar
  16. 16.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambridge University Press, New York, 2006), p. 131.CrossRefGoogle Scholar
  17. 17.
    S. Sadique, A. Mollah, M. Islam, M. Ali, M. Megat and S. Basri, Oxidation of Metals 54, (5–6), 2000 (385–400).CrossRefGoogle Scholar
  18. 18.
    F. H. Stott, in Materials Science Forum, Vol. 251 (Trans Tech Publications, 1997), pp. 19–32.Google Scholar
  19. 19.
    F. H. Stott and G. C. Wood, Oxidation of Metals 44, 1995 (113–145).CrossRefGoogle Scholar
  20. 20.
    C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, (11), 1971 (1782–1790).CrossRefGoogle Scholar
  21. 21.
    G. N. Irving, J. Stringer and D. P. Whittle, Corrosion 33, 1977 (56–60).CrossRefGoogle Scholar
  22. 22.
    S. W. Guan and W. W. Smeltzer, Oxidation of Metals 42, 1994 (375).Google Scholar
  23. 23.
    J. F. Radavich, Corrosion 15, 1959 (613–617).CrossRefGoogle Scholar
  24. 24.
    D. E. Jones and J. Stringer, Oxidation of Metals 9, 1975 (409).CrossRefGoogle Scholar
  25. 25.
    F. H. Stott, G. J. Gabriel, F. I. Wei and G. C. Wood, Materials and Corrosion 38, (9), 1987 (521–531).CrossRefGoogle Scholar
  26. 26.
    B. Gleeson and M. A. Harper, Oxidation of Metals 49, (3–4), 1998 (373–399).CrossRefGoogle Scholar
  27. 27.
    G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, (5–6), 2010 (319–340).CrossRefGoogle Scholar
  28. 28.
    L. Mikkelsen, S. Linderoth, J. Bilde-Sørensen, in Materials Science Forum, (Trans Tech Publ, 2004), p. 117.Google Scholar
  29. 29.
    DE Jones and J. Stringer, Oxidation of Metals 9, (5), 1975 (409–413).CrossRefGoogle Scholar
  30. 30.
    E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 106, (11), 1959 (941–948).CrossRefGoogle Scholar
  31. 31.
    G. R. Holcomb and D. E. Alman, Scripta Materialia 54, (10), 2006 (1821–1825).CrossRefGoogle Scholar
  32. 32.
    Y. H. Lu, Z. B. Wang, Y. Y. Song and L. J. Rong, Corrosion Science 102, 2016 (301–309).CrossRefGoogle Scholar
  33. 33.
    X. Peng, Nanoscale 2, 2010 (262–268).CrossRefGoogle Scholar
  34. 34.
    F. H. Wang, Oxidation of Metals 48, 1997 (215–224).CrossRefGoogle Scholar
  35. 35.
    F. Stott, G. Gabriel, F. Wei and G. Wood, Materials and Corrosion 38, (9), 1987 (521–531).CrossRefGoogle Scholar
  36. 36.
    B. Gleeson and M. Harper, Lifetime Modelling of High Temperature Corrosion Processes:(EFC 34), (Maney Publishing, London, 2001), p. 167.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yanhong Lu
    • 1
  • Maolong Zhang
    • 1
  • Weibao Tang
    • 1
  • Yuanyuan Song
    • 2
  • Lijian Rong
    • 2
    Email author
  1. 1.Shanghai Electric Nuclear Power Equipment Co., LtdShanghaiChina
  2. 2.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations