Advertisement

Study of SiO2 on Ni and Ti Silicide After Different Oxidation Techniques Investigated by XRR, SEM and Ellipsometry

  • Md. Khalilur RahmanEmail author
  • Christophe Licitra
  • Fabrice Nemouchi
Original Paper
  • 6 Downloads

Abstract

Although silicide oxidation was studied 20 years ago, the interest in obtaining a robust process for new applications remains significant today. Indeed, the new architectural development process requires dense and narrow spaces. In this study, attempts were made to bury a silicide layer under a protective silica layer in order to keep the physical and electrical properties of the silicide constant after oxidation. Thus, we first tried to reproduce and study these conditions and, once acquired, aimed to decrease the oxidation temperature in order to meet industrial requirements. Titanium (Ti) and nickel (Ni) were chosen for their metallurgical interest and their integration capability in devices. Four different groups of silicide (TiSi, TiSi2, Ni2Si, NiSi) were targeted by adjusting the temperature. Then, all of the silicides, including one pure Si wafer, were oxidized using dry, wet and plasma techniques. In situ scanning electron microscopy, spectroscopic ellipsometry and X-ray reflectivity measurements were carried out simultaneously before and after oxidation of the silicide to characterize the SiO2 and silicide morphology, thickness and density. We found that after 800 °C dry oxidation, Ti silicide was totally oxidized, which was an unexpected result. But, Ni silicide showed an agglomeration phenomenon after 500 °C and 800 °C dry oxidation. Although, after wet oxidation, it was confirmed that the highest SiO2 thickness formed, the NiSi surface roughness was higher. In the case of plasma oxidation, we obtained a thin layer (≈ 1 nm) of SiO2 on NiSi with an extremely smooth surface.

Keywords

Silicidation Oxidation In situ morphology In situ X-ray reflectivity In situ ellipsometry 

Notes

Acknowledgements

The authors would like to express their appreciation to M. Danielo for dry and wet oxidation, to O. Pollet for microwave plasma oxidation, to A.B. Fadjie Djomkam and E. Bourjot for their helpful discussion and encouragement. This work is supported by CEA-Leti, Minatec.

References

  1. 1.
    E. Bourjot, M. Putero, C. Perrin-Pellegrino, P. Gergaud, M. Gregoire, F. Nemouchi and D. Mangelinck, Microelectronic Engineering 120, 163 (2014).CrossRefGoogle Scholar
  2. 2.
    S. D. Kim, C. M. Park and J. C. S. Woo, IEEE Transactions on Electron Devices 49, 467 (2002).CrossRefGoogle Scholar
  3. 3.
    F. Deng, R. A. Johnson, P. M. Asbeck and S. S. Lau, Journal of Applied Physics 81, 8047 (1997).CrossRefGoogle Scholar
  4. 4.
    H. Iwai, T. Ohguro and S. Ohmi, Microelectronics Engineering 60, 157 (2002).CrossRefGoogle Scholar
  5. 5.
    T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, et al., IEEE Transactions on Electron Devices 42, 915 (1995).CrossRefGoogle Scholar
  6. 6.
    Meng Li, Oh Sung-Kwen, Hong-Sik Shin and Hi-Deok Lee, Journal of Semiconductor Technology and Science. 13, 252 (2013).CrossRefGoogle Scholar
  7. 7.
    T. J. Kang, H.-Y. Lee and Y. H. Kim, Journal of Microelectromechanical Systems 16, 279 (2007).CrossRefGoogle Scholar
  8. 8.
    B. Imbert, S. Zoll, P. Garnier, B. Pernet, D. Galpin, R. Beneyton, M. Juhel, P. Mur, V. Carron and O. Thomas, Materials Science and Engineering B 154–155, 155 (2008).CrossRefGoogle Scholar
  9. 9.
    A. Vellei, R. Fallica, D. Sangalli and A. Lamperti, Journal of Applied Physics 111, 093501-6 (2012).CrossRefGoogle Scholar
  10. 10.
    H. Lee, S. Na and J. G. Kang, Method for preparing silicide of a semiconductor device and a source/drain for use in the semiconductor device, U.S. Patent USPTO 20150279737 (2015).Google Scholar
  11. 11.
    P. Yuan, M. Wei, Z. Fu, G. Shao, H. Tatsuoka and J. Hu, Materials Science in Semiconducting Processing 27, 873 (2014).CrossRefGoogle Scholar
  12. 12.
    L. N. Lie, W. A. Tiller and K. C. Saraswat, Journal of Applied Physics 56, 2127 (1984).CrossRefGoogle Scholar
  13. 13.
    M. Bartur and M. A. Nicolet, Journal of the Electrochemical Society 131, 371 (1984).CrossRefGoogle Scholar
  14. 14.
    A. Cros, R. A. Pollak and K. N. Tu, Journal of Applied Physics 57, 2253 (1985).CrossRefGoogle Scholar
  15. 15.
    R. D. Frampton, E. A. Irene and F. M. d’Heurle, Journal of Applied Physics 62, 2972 (1987).CrossRefGoogle Scholar
  16. 16.
    F. d’Heurle, R. D. Frampton, E. A. Irene, H. Jiang and C. S. Petersson, Applied Physics Letters 47, 1170 (1985).CrossRefGoogle Scholar
  17. 17.
    J. E. E. Baglin, F. M. d’Heurle and C. S. Petersson, Journal of Applied Physics 54, 1849 (1983).CrossRefGoogle Scholar
  18. 18.
    F. d’Heurle, Applied Physics Letters 42, 361 (1983).CrossRefGoogle Scholar
  19. 19.
    W. Y. Yang, H. Iwakuro, H. Yagi, T. Kuroda and S. Nakamura, Journal of Applied Physics 23, 1560 (1984).CrossRefGoogle Scholar
  20. 20.
    M. K. Rahman, F. Nemouchi, T. Chevolleau, P. Gergaud and K. Yckache, Materials Science in Semiconductor Processing 71, 470 (2017).CrossRefGoogle Scholar
  21. 21.
    C. Lavoie, F. M. d’Heurle, C. Detavernier and C. Cabral, Microelectronic Engineering 70, 144 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Md. Khalilur Rahman
    • 1
    • 2
    Email author
  • Christophe Licitra
    • 1
  • Fabrice Nemouchi
    • 1
  1. 1.CEA-LETIGrenoble CedexFrance
  2. 2.Department of PhysicsComilla UniversityComillaBangladesh

Personalised recommendations