Origin of Nickel Catalytic Particles in Carbon Nanotube Formation on a High-Carbon 25Cr–35Ni–Nb Cast Alloy

  • Nicolas Vaché
  • Sophie Cazottes
  • Thierry Douillard
  • Claude Duret-Thual
  • François Dupoiron
  • Christel Augustin
  • Philippe SteyerEmail author
Original Paper


In this study, carbon nanotubes (CNTs) were formed on a high-carbon 25Cr35Ni–Nb cast alloy using a laboratory-scale experimental set-up that simulated favorable conditions for CNT growth in the presence of ethane and water vapor. After 45 min of exposure to the reactive atmosphere, the entire sample surface was covered with multiwalled nanotubes with an average diameter of approximately 50 nm, indicating the strong catalytic activity of the alloy surface. Transmission electron microscopy combined with energy-dispersive X-ray spectroscopy analyses revealed the presence of iron-containing Ni3C-based catalytic particles at the nanotubes tip. The origin of the nickel in the system was then investigated via cross-sectional observations and discussed. A mechanism similar to the so-called “ex-solution” process was proposed to explain the presence of catalytic particles, while their stability was attested by thermodynamic considerations. A scenario describing the different steps involved in the CNTs formation on the oxide scale is finally proposed.


25Cr35Ni cast alloy Carbon nanotubes Oxide scale Nickel carbides Thermo-calc 



This work was financially supported by the Association Nationale de la Recherche et de la Technologie (ANRT) through Project 2015/0205.


  1. 1.
    E. Boellaard, P. K. de Bokx, A. J. H. M. Kock and J. W. Geus, Journal of Catalysis 96, 481 (1985).CrossRefGoogle Scholar
  2. 2.
    L. F. Albright and J. C. Marek, Industrial and Engineering Chemistry Research 27, 755 (1988).CrossRefGoogle Scholar
  3. 3.
    C. H. Toh, P. R. Munroe and D. J. Young, Oxidation of Metals 58, 1 (2002).CrossRefGoogle Scholar
  4. 4.
    A. E. Muñoz Gandarillas, K. M. Van Geem, M.-F. Reyniers and G. B. Marin, Industrial and Engineering Chemistry Research 53, 6358 (2014).CrossRefGoogle Scholar
  5. 5.
    P. R. S. Jackson, D. J. Young and D. L. Trimm, Journal of Materials Science 21, 4376 (1986).CrossRefGoogle Scholar
  6. 6.
    P. R. S. Jackson, D. L. Trimm and D. J. Young, Journal of Materials Science 21, 3125 (1986).CrossRefGoogle Scholar
  7. 7.
    G. C. Reyniers, G. F. Froment, F.-D. Kopinke and G. Zimmermann, Industrial and Engineering Chemistry Research 33, 2584 (1994).CrossRefGoogle Scholar
  8. 8.
    F. D. Kopinke, G. Zimmermann and S. Nowak, Carbon 26, 117 (1988).CrossRefGoogle Scholar
  9. 9.
    B. Bao, J. Liu, H. Xu, B. Liu and W. Zhang, RSC Advances 6, 68934 (2016).CrossRefGoogle Scholar
  10. 10.
    D. J. Young, High Temperature Technology 1, 101 (1982).CrossRefGoogle Scholar
  11. 11.
    H. E. Evans, D. A. Hilton, R. A. Holm and S. J. Webster, Oxidation of Metals 19, 1 (1983).CrossRefGoogle Scholar
  12. 12.
    X. Ledoux, S. Mathieu, M. Vilasi, Y. Wouters, P. Del-Gallo and M. Wagner, Oxidation of Metals 80, 25 (2013).CrossRefGoogle Scholar
  13. 13.
    H. Li and W. Chen, Corrosion Science 52, 2481 (2010).CrossRefGoogle Scholar
  14. 14.
    G. R. Millward, H. E. Evans, M. Aindow and C. W. Mowforth, Oxidation of Metals 56, 231 (2001).CrossRefGoogle Scholar
  15. 15.
    P. Tomaszewicz, P. R. S. Jackson, D. L. Trimm and D. J. Young, Journal of Materials Science 20, 4035 (1985).CrossRefGoogle Scholar
  16. 16.
    D. R. G. Mitchell and D. J. Young, Journal of Materials Science 29, 4357 (1994).CrossRefGoogle Scholar
  17. 17.
    R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, Journal of Catalysis 26, 51 (1972).CrossRefGoogle Scholar
  18. 18.
    R. T. Yang and J. P. Chen, Journal of Catalysis 115, 52 (1989).CrossRefGoogle Scholar
  19. 19.
    A. Loiseau, P. Launois, P. Petit, S. Roche and J.-P. Salvetat (eds.), Understanding Carbon Nanotubes, vol. 677, (Springer, Berlin, 2006).Google Scholar
  20. 20.
    V. Jourdain and C. Bichara, Carbon 58, 2 (2013).CrossRefGoogle Scholar
  21. 21.
    J. Schindelin, et al., Nature Methods 9, 676 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Zhang and D. J. Young, Corrosion Science 56, 184 (2012).CrossRefGoogle Scholar
  23. 23.
    S. Fujieda, K. Shinoda, S. Suzuki and B. Jeyadevan, Materials Transactions 53, 1716 (2012).CrossRefGoogle Scholar
  24. 24.
    M. Schütze, W. J. Quadakkers, J. R. Nicholls, European Federation of Corrosion, and Institute of Materials (Great Britain), eds., Lifetime Modelling of High Temperature Corrosion Processes: Proceedings of an EFC Workshop 2001. (Published for the European Federation of Corrosion by Maney Publishing on behalf of the Institute of Materials, London, 2001).Google Scholar
  25. 25.
    X. Q. Wu, Y. S. Yang, Q. Zhan and Z. Q. Hu, Journal of Materials Engineering and Performance 7, 667 (1998).CrossRefGoogle Scholar
  26. 26.
    S. R. Shatynski, Oxidation of Metals 13, 105 (1979).CrossRefGoogle Scholar
  27. 27.
    J. Zhang and D. J. Young, Oxidation of Metals 70, 189 (2008).CrossRefGoogle Scholar
  28. 28.
    S. Esconjauregui, C. M. Whelan and K. Maex, Carbon 47, 659 (2009).CrossRefGoogle Scholar
  29. 29.
    D. Papargyriou and J. T. S. Irvine, Solid State Ionics 288, 120 (2016).CrossRefGoogle Scholar
  30. 30.
    Y.-F. Sun, et al., Nano Letters 16, 5303 (2016).CrossRefGoogle Scholar
  31. 31.
    O. Kwon, et al., Nature Communications 8, 15967 (2017).CrossRefGoogle Scholar
  32. 32.
    D. Neagu, et al., Nature Communications 6, 2120 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nicolas Vaché
    • 1
    • 3
  • Sophie Cazottes
    • 1
  • Thierry Douillard
    • 1
  • Claude Duret-Thual
    • 1
    • 2
  • François Dupoiron
    • 3
  • Christel Augustin
    • 3
  • Philippe Steyer
    • 1
    Email author
  1. 1.INSA-LYON, Laboratoire MATEISUniversité de LyonVilleurbanne CedexFrance
  2. 2.French Corrosion InstituteFraissesFrance
  3. 3.Total TRTG (Total Recherche et Technologie de Gonfreville)HarfleurFrance

Personalised recommendations