Advertisement

Oxidation of Metals

, Volume 91, Issue 1–2, pp 77–93 | Cite as

Effect of Exposure Temperature on Oxidation of Austenitic Steel HR3C in Supercritical Water

  • Zhongliang Zhu
  • Hong Xu
  • Hasan Izhar Khan
  • Dongfang Jiang
  • Naiqiang ZhangEmail author
Original Paper
  • 48 Downloads

Abstract

Oxidation tests of the austenitic steel HR3C were conducted at 600–700 °C in supercritical water under 25 MPa. The characteristics of oxide scales formed on HR3C were investigated using gravimetry, grazing incidence X-ray diffraction, electron back-scatter diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The oxidation kinetics obeyed a near-parabolic law at 600 °C but followed a near-cubic law at 620–700 °C. The oxide films consisted of an Fe-rich outer layer and a Cr-rich inner layer. The phase constitution of the outer layer was Fe2O3 and Fe3O4, while the inner layer was spinel. Moreover, a continuous Cr2O3 formed at the oxide/steel interface during exposure at 700 °C.

Graphical Abstract

Keywords

Stainless steel Supercritical water EBSD Oxidation 

Notes

Acknowledgements

This paper was supported by the Fundamental Research Funds for the Central Universities (2018QN012), the National Natural Science Foundation of China (51471069), Science and Technology Program of Beijing (Z181100005218006), and the Natural Science Foundation of Beijing (2152029).

References

  1. 1.
    Y. S. Wu, M. C. Zhang, and X. S. Xie, Procedia Engineering 130, 617 (2015).CrossRefGoogle Scholar
  2. 2.
    R. Viswanathan and W. Bakker, Journal of Materials Engineering and Performance 10, 81 (2001).CrossRefGoogle Scholar
  3. 3.
    G. S. Was, S. Teysseyre, and Z. Jiao, Corrosion 62, 989 (2006).CrossRefGoogle Scholar
  4. 4.
    G. S. Was and T. R. Allen, Time, temperature, and dissolved oxygen dependence of oxidation of austenitic and ferritic-martensitic alloys in supercritical water. Proceedings of ICAPP’05; Paper 5690.Google Scholar
  5. 5.
    S. Kasahara, General Corrosion of Iron, Nickel and Titanium Alloys as Candidate Materials for the Fuel Cladding of Supercritical-Water Cooled Power Reactor, GENES4/ANP2003, Kyoto, Japan, Sept 2003; Paper 1132.Google Scholar
  6. 6.
    N. Q. Zhang, Z. L. Zhu, Q. Zhang, B. R. Li, and H. Xu, Advanced Science Letters 19, 2440 (2013).CrossRefGoogle Scholar
  7. 7.
    N. Otsuka, Y. Shida, and H. Fujikawa, Oxidation of Metals 32, 13 (1989).CrossRefGoogle Scholar
  8. 8.
    A. N. Hansson, H. Danielsen, F. B. Grumsen, and M. Montgomery, Materials and Corrosion 61, 665 (2010).Google Scholar
  9. 9.
    D. Gómez-Briceno, F. Blázquez, and A. Sáez-Maderuelo, Oxidation of austenitic and ferritic/martensitic alloys in supercritical water. The Journal of Supercritical Fluids 78, 103 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Behnamian, A. Mostafaei, A. Kohandehghan, B. S. Amirkhiz, R. Zahiri, W. Y. Zheng, D. Guzonas, M. Chmielus, W. X. Chen, and J. L. Luo, The Journal of Supercritical Fluids 119, 245 (2017).CrossRefGoogle Scholar
  11. 11.
    I. Wright and B. A. Pint, An Assessment of the High-Temperature Oxidation Behavior of Fe–Cr Steels in Water Vapor and Steam, NACE Corrosion/2002. Denver, 02377 (2002).Google Scholar
  12. 12.
    A. Iseda, H. Okada, H. Semba, and M. Igarashi, Energy Materials 2, 199 (2007).CrossRefGoogle Scholar
  13. 13.
    Y. Y. Fang, J. Zhao and X. N. Li, Acta Metallurgica Sinica 46, 2010 (844).CrossRefGoogle Scholar
  14. 14.
    Z. Zhang, Z. F. Hu, H. Y. Tu, S. Schmauderb, and G. X. Wu, Materials Science and Engineering: A 681, 74 (2017).CrossRefGoogle Scholar
  15. 15.
    N. Zhang, Z. Zhu, G. Yue, D. Jiang, and H. Xu, Materials Characterization 132, 119 (2017).CrossRefGoogle Scholar
  16. 16.
    N. Zhang, Z. Zhu, Q. Cao, J. Gui, and H. Xu, Materials and Corrosion 69, 319 (2018).CrossRefGoogle Scholar
  17. 17.
    L. Tan, X. Ren, and T. R. Allen, Corrosion Science 52, 1520 (2010).CrossRefGoogle Scholar
  18. 18.
    I. G. Wright and R. B. Dooley, International Materials Reviews 55, 129 (2010).CrossRefGoogle Scholar
  19. 19.
    P. Ampornrat and G. S. Was, Journal of Nuclear Materials 371, 1 (2007).CrossRefGoogle Scholar
  20. 20.
    Z. L. Zhu, H. Xu, D. F. Jiang, X. P. Mao, and N. Q. Zhang, Corrosion Science 113, 172 (2016).CrossRefGoogle Scholar
  21. 21.
    J. Töpfer, S. Aggarwal, and R. Dieckmann, Solid State Ionics 81, 251 (1995).CrossRefGoogle Scholar
  22. 22.
    M. Montgomery, A. Karlsson, VGB Kraftwerkstechnik-English Edition 75, 235 (1995).Google Scholar
  23. 23.
    M. Fulger, M. Mihalache, D. Ohai, S. Fulger, and S. C. Valeca, Journal of Nuclear Materials 415, 147 (2011).CrossRefGoogle Scholar
  24. 24.
    D. Laverde, T. Gómez-Acebo, and F. Castro, Corrosion Science 46, 613 (2004).CrossRefGoogle Scholar
  25. 25.
    S. E. Ziemniak and M. Hanson, Corrosion Science 44, 2209 (2002).CrossRefGoogle Scholar
  26. 26.
    M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson, and L.-G. Johansson, Corrosion Science 48, 2014 (2006).CrossRefGoogle Scholar
  27. 27.
    H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).CrossRefGoogle Scholar
  28. 28.
    J. Jianmin, M. Montgomery, O. H. Larsen, and S. A. Jensen, Materials and Corrosion 56, 459 (2005).CrossRefGoogle Scholar
  29. 29.
    M. Nezakat, H. Akhiani, S. Penttilä, S. M. Sabet, and J. Szpunar, Corrosion Science 94, 197 (2015).CrossRefGoogle Scholar
  30. 30.
    J. Robertson, Corrosion Science 29, 1275 (1989).CrossRefGoogle Scholar
  31. 31.
    X. Ren, K. Sridharan, and T. R. Allen, Corrosion 63, 603 (2007).CrossRefGoogle Scholar
  32. 32.
    H. Hu, Z. Zhou, M. Li, L. Zhang, M. Wang, S. Li, and C. Ge, Corrosion Science 65, 209 (2012).CrossRefGoogle Scholar
  33. 33.
    C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).CrossRefGoogle Scholar
  34. 34.
    R. A. Rapp, Acta Metallurgica 9, 730 (1961).CrossRefGoogle Scholar
  35. 35.
    C. Wagner, Berichte der Bunsengesellschaft für physikalische Chemie 63, 772 (1959).Google Scholar
  36. 36.
    J. H. Swisher and E. T. Turkdogan, AIME Met Soc Trans 239, 426 (1967).Google Scholar
  37. 37.
    E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen, (Springer Verlag, Berlin, 1976).CrossRefGoogle Scholar
  38. 38.
    E. Essuman, G. H. Meier, J. Żurek, M. Hänsel, and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).CrossRefGoogle Scholar
  39. 39.
    M. S. McIntosh, Mechanisms and Factors Affecting Chromium Oxide Particle Reduction in Iron–Chromium Honeycombs, Ph.D. Thesis (Georgia Institute of Technology, April 2005).Google Scholar
  40. 40.
    H. Asteman, J. E. Svensson, and L. G. Johansson, Corrosion Science 44, 2635 (2002).CrossRefGoogle Scholar
  41. 41.
    G. R. Holcomb, Journal of the Electrochemical Society 156, 292 (2009).CrossRefGoogle Scholar
  42. 42.
    G. R. Holcomb, Oxidation of Metals 69, 163 (2008).CrossRefGoogle Scholar
  43. 43.
    H. Asteman, J. E. Svensson, L. G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).CrossRefGoogle Scholar
  44. 44.
    L. Tan, T. R. Allen, and Y. Yang, Corrosion Science 53, 703 (2011).CrossRefGoogle Scholar
  45. 45.
    H. Y. Li, Q. Cao, and Z. L. Zhu, Corrosion Engineering. Science and Technology 53, 293 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhongliang Zhu
    • 1
    • 2
  • Hong Xu
    • 2
  • Hasan Izhar Khan
    • 2
  • Dongfang Jiang
    • 3
  • Naiqiang Zhang
    • 2
    Email author
  1. 1.Electrical and Electronic Engineering SchoolNorth China Electric Power UniversityBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of EducationNorth China Electric Power UniversityBeijingPeople’s Republic of China
  3. 3.State Grid Energy Research Institute Co., Ltd.BeijingPeople’s Republic of China

Personalised recommendations