Advertisement

Oxidation of Metals

, Volume 91, Issue 1–2, pp 191–212 | Cite as

Morphology and Buckling of the Oxide Scale after Fe–9Cr Steel Oxidation in Water Vapor Environment

  • Marie-Christine Demizieux
  • Clara Desgranges
  • Laure Martinelli
  • Jérôme FavergeonEmail author
  • Kevin Ginestar
Original Paper
  • 43 Downloads

Abstract

Under water vapor exposure at 550–560 °C, Fe–9Cr ferritic–martensitic steels form a triplex oxide scale made of an outer magnetite layer surrounded by a hematite layer and an inner Fe–Cr spinel layer. Long-time oxidation tests have been performed to study scale degradation with time. It revealed that buckling and spallation of the oxide scale always occurred during isothermal oxidation or during cooling down to room temperature. The interfacial zone of delamination has been proved to be located inside the magnetite layer, where a voids belt is formed and grows. It is assumed that voids are the preponderant factor initiating delamination of the magnetite layer under compressive stresses during the oxide scale growth. A mechanism of accumulation of vacancies leading to voids formation and then to the spallation of the outer oxide scale is proposed.

Keywords

Iron–chromium steel Steam TEM-EBSD Raman spectroscopy High-temperature oxidation 

Notes

Acknowledgements

The authors are very thankful to E. Amblard for providing Raman microscope at CEN/DEN/DANS/SECR/LECBA, M. Tabarant for GD-OES analyses, K. Rousseau for TEM observations, AREVA-NP and EDF for their financial support.

References

  1. 1.
    J. Armitt, R. Holmes, M. I. Manning, D. B. Meadowcroft and E. Metcalfe, EPRI Report FP-686 (1978).Google Scholar
  2. 2.
    I. G. Wright and R. B. Dooley, International Materials Reviews 55, (3), 129 (2010).CrossRefGoogle Scholar
  3. 3.
    J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).CrossRefGoogle Scholar
  4. 4.
    W. J. Quadakkers, P. J. Ennis, J. Zürek and M. Michalik, Materials at High Temperatures 22, (1–2), 47 (2005).Google Scholar
  5. 5.
    P. J. Ennis and W. J. Quadakkers, International Journal of Pressure Vessels and Piping 84, 75 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Schütze, D. Renusch and M. Schorr, Materials at High Temperatures 22, (1–2), 113 (2005).Google Scholar
  7. 7.
    N. Nishimura, N. Komai, Y. Hirayama and F. Masuyama, Materials at High Temperatures 22, (1–2), 3 (2005).CrossRefGoogle Scholar
  8. 8.
    D. Laverde, T. Gomez-Acebo and F. Castro, Corrosion Science 46, 613 (2006).CrossRefGoogle Scholar
  9. 9.
    S. Osgerby, Materials at High Temperatures 17, (2), 307 (2000).CrossRefGoogle Scholar
  10. 10.
    N. Otsuka, Materials at High Temperatures 22, (1–2), 131 (2005).CrossRefGoogle Scholar
  11. 11.
    C. Cabet, J. L. Courouau, F. Dalle, C. Desgranges, L. Forest, L. Martinelli and M. Sauzay, in Proceeding of the Structural Materials for Innovative Nuclear Systems (SMINS-3) Workshop (2013), p. 55.Google Scholar
  12. 12.
    L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant and K. Rousseau, Corrosion Science 100, 253 (2015).CrossRefGoogle Scholar
  13. 13.
    R. Viswanathan, J. Sarver and J. M. Tanzosh, Journal of Materials Engineering and Performance 15, (3), 255 (2006).CrossRefGoogle Scholar
  14. 14.
    S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 775 (2008).CrossRefGoogle Scholar
  15. 15.
    N. H. Lee, S. Kim, B. H. Choe, K. B. Yoon and D. Kwon, Engineering Failure Analysis 16, 2031 (2009).CrossRefGoogle Scholar
  16. 16.
    X. Zhong, X. Wu and E. H. Han, Journal of Supercritical Fluids 72, 68 (2012).CrossRefGoogle Scholar
  17. 17.
    H. E. Evans, International Materials Reviews 40, (1), 1 (1995).CrossRefGoogle Scholar
  18. 18.
    H. E. Evans, Materials at High Temperatures 22, (1–2), 155 (2005).CrossRefGoogle Scholar
  19. 19.
    M. Schütze, Corrosion Engineering, Science and Technology 48, (4), 303 (2013).CrossRefGoogle Scholar
  20. 20.
    M. Rudolphi and M. Schütze, Oxidation of Metals 79, 167 (2013).CrossRefGoogle Scholar
  21. 21.
    I. G. Wright, M. Schütze, P. F. Tortorelli and R. B. Dooley, Materials at High Temperatures 24, (4), 265 (2007).CrossRefGoogle Scholar
  22. 22.
    A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).CrossRefGoogle Scholar
  23. 23.
    G. Parry, A. Cimetière, C. Coupeau, J. Colin and J. Grilhé, Physical Review E74, 066601 (2006).Google Scholar
  24. 24.
    T. Maruyama and N. Fukagai, Materials Science Forum 461–464, 807 (2004).CrossRefGoogle Scholar
  25. 25.
    M. C. Demizieux, C. Desgranges, L. Martinelli and J. Favergeon, Corrosion Science (2018).Google Scholar
  26. 26.
    D. L. A. De Faria, S. Venauncio Silva and M. T. De De Oliveira, Journal of Raman Spectroscopy 28, 873 (1997).CrossRefGoogle Scholar
  27. 27.
    D. K. Bora, A. Braun, S. Erat, O. Safonova, T. Graule and E. C. Constable, Current Applied Physics 12, 817 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Schütze, Protective Oxide Scales and their Breakdown (Wiley, 1997).Google Scholar
  29. 29.
    H. E. Evans and M. P. Taylor, Surface and Coatings Technology 94–95, 27 (2007).Google Scholar
  30. 30.
    V. K. Tolpygo, J. R. Dryden and D. R. Clarke, Acta Materialia 46, (3), 927 (1998).CrossRefGoogle Scholar
  31. 31.
    M. C. Demizieux, J. Favergeon, L. Martinelli, C. Desgranges and G. Sattonay, Oxidation of Metals 88, (1–2), 57 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de technologie de Compiègne, CNRS, FRE 2012 Roberval, Centre de recherche Royallieu -CS 60319Sorbonne universitésCompiègne cedexFrance
  2. 2.Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEAUniversité Paris-SaclayGif-sur-YvetteFrance
  3. 3.Safran Paris-SaclayMagny-Les-HameauxFrance

Personalised recommendations