Advertisement

Oxidation of Metals

, Volume 91, Issue 1–2, pp 177–189 | Cite as

Microstructure and Oxidation Behavior of Ni–TiO2 Composite Coating at High Temperature

  • Eisa Khoran
  • Morteza ZandrahimiEmail author
  • Hadi Ebrahimifar
Original Paper
  • 55 Downloads

Abstract

Ni-based composite coatings are considered to improve the oxidation resistance of stainless steel. In this study, Ni–TiO2 composite coatings were electrodeposited onto the AISI 430 stainless steel. The isothermal oxidation of bare steel and steel with Ni–TiO2 coating was performed at 800 °C for 200 h. Moreover, cyclic oxidation of the coated and bare steel was performed up to 50 cycles. The coating layer and oxide scales were investigated by X-ray diffraction and scanning electron microscopy. All the coated specimens showed good oxidation resistance during the oxidation tests. The TiO2 particles in the coating affected the stability of the protective oxide scale. Furthermore, the coated steel showed a lower oxidation rate compared with the bare steel. It is concluded that TiO2 increases oxidation resistance by blocking the outward diffusion of Cr cations.

Keywords

Oxidation Microstructure Ni–TiO2 Electrodeposition 

References

  1. 1.
    P. Baghery, M. Farzam, A. B. Mousavi and M. Hosseini, Surface and Coatings Technology 204, 3804 (2010).CrossRefGoogle Scholar
  2. 2.
    H. Gül, H. Kılıc, S. Aslan, A. Alp and H. Akbulut, Wear 267, 976 (2009).CrossRefGoogle Scholar
  3. 3.
    Y. J. Xue, Z. J. Xian, Y. W. Zhou, W. Ma and Li J. Sh, Surface Coating Technology 200, 5677 (2006).CrossRefGoogle Scholar
  4. 4.
    S. T. Aruna, C. N. Bindu, S. V. Ezhil, G. V. K. William and K. S. Rajam, Surface and Coatings Technology 200, 6871 (2006).CrossRefGoogle Scholar
  5. 5.
    R. Sen, S. Bhattacharya, S. Das and K. Das, Alloys Compound 489, 650 (2010).CrossRefGoogle Scholar
  6. 6.
    R. Sen, S. Das and K. Das, Material Charactization 62, 257 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. J. Xue, D. Zhu and F. Zhao, Journal of Material Science 39, 4063 (2004).CrossRefGoogle Scholar
  8. 8.
    Y. J. Xue, J. S. Li, W. Ma, Y. W. Zhou and M. D. Duan, Journal of Material Science 41, 1781 (2006).CrossRefGoogle Scholar
  9. 9.
    L. Tian and J. Xu, Applied Surface Science 257, 7615 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Geng, S. Qi, Q. Zhao, S. Zhu and F. Wang, International Journal of Hydrogen Energy 37, 10850 (2012).CrossRefGoogle Scholar
  11. 11.
    F. H. Stott and D. J. Ashby, Corrosion Science 18, 183 (1978).CrossRefGoogle Scholar
  12. 12.
    Y. B. Zhou, J. F. Sun, S. C. Wang and H. J. Zhang, Corrosion Science 63, 351 (2012).CrossRefGoogle Scholar
  13. 13.
    X. Peng, D. Ping, T. Li, W. Wu, Journal of Electrochemical Society 145 (1998).Google Scholar
  14. 14.
    X. Peng, T. Li, W. Wu, Oxidation of Metals 51 (1999).Google Scholar
  15. 15.
    Y. J. Xue, H. B. Liu, M. M. Lan, S. J. Li and H. Li, Surface & Coatings Technology 204, 3539 (2010).CrossRefGoogle Scholar
  16. 16.
    N. S. Qu, D. Zhu and K. Chan, ScriptaMaterialia 54, 1421 (2006).Google Scholar
  17. 17.
    W. Zhou, Y. G. Zhao, W. Li, B. Tian, S. W. Hu and Q. D. Qin, Materials Science and Engineering A 458, 34 (2007).CrossRefGoogle Scholar
  18. 18.
    A. A. Moosa and S. J. Rothman, Oxidation of Metals 24, 1985 (133).CrossRefGoogle Scholar
  19. 19.
    N. Briks, G. H. Heler and S. P. Fred, High Temperature Oxidation of Metals (Cambridge Press, 2006), pp. 147–150.Google Scholar
  20. 20.
    S. Geng, Y. Li, Z. Ma, L. Wang, L. Li and F. Wang, Journal of Power Sources 195, 3256 (2010).CrossRefGoogle Scholar
  21. 21.
    S. Geng, S. Qi, Q. Zhao, S. Zhu and F. Wang, International Journal of Hydrogen 37, 10850 (2012).CrossRefGoogle Scholar
  22. 22.
    S. K. Mitra, S. K. Roy and S. K. Bose, Oxidation of Metals 34, 101 (1990).CrossRefGoogle Scholar
  23. 23.
    N. Briks, G. H. Heler and S. P. Fred, High Temperature Oxidation of Metals (Cambridge Press, 2006), pp. 117–120.Google Scholar
  24. 24.
    P. D. Jablonski and D. E. Alman, Journal of Power Sources 180, 433 (2008).CrossRefGoogle Scholar
  25. 25.
    S. Geng and J. Zhu, Journal of Power Sources 160, 1009 (2006).CrossRefGoogle Scholar
  26. 26.
    Z. Yang, G. X. Guan, C. M. Wang, Z. Nie, J. Templeton, J. W. Stevenson and P. Singh, Journal of Power Sources 183, 660 (2008).CrossRefGoogle Scholar
  27. 27.
    S. J. Geng, J. H. Zhu and Z. G. Lu, ScriptaMaterialia 55, 239 (2006).Google Scholar
  28. 28.
    H. Hindam, Journal of Electrochemical Society 129, 1147 (1982).CrossRefGoogle Scholar
  29. 29.
    B. A. Pint, Oxidation of Metals 45, 1 (1996).CrossRefGoogle Scholar
  30. 30.
    H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals 75, 125 (2010).CrossRefGoogle Scholar
  31. 31.
    M. Zandrahimi, J. Vatandoost and H. Ebrahimifar, Oxidation of Metals 76, 347 (2011).CrossRefGoogle Scholar
  32. 32.
    N. Shaigan, W. Qu, D. G. Ivey and W. Chen, Journal of Power Sources 195, 1529 (2010).CrossRefGoogle Scholar
  33. 33.
    H. Ebrahimifar and M. Zandrahimi, Indian Journal of Engineering and Materials Sciences 18, 314 (2011).Google Scholar
  34. 34.
    K. V. Krishna Rao, S. V. Nagender Naidu and L. Iyengar, Journal of the American Society 53, 124 (1970).Google Scholar
  35. 35.
    NiO: T. H. Njelsen, M. H. Lejpold, Journal of the American Society 48, 164 (1956)Google Scholar
  36. 36.
    H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals 84, 329 (2015).CrossRefGoogle Scholar
  37. 37.
    H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals 84, 129 (2015).CrossRefGoogle Scholar
  38. 38.
    A. Petric and H. Ling, Journal of American Ceramic Society 90, 1515 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials Science, Faculty of EngineeringShahid Bahonar University of KermanKermanIran
  2. 2.Department of Materials Engineering, Faculty of Mechanical and Materials EngineeringGraduate University of Advanced TechnologyKermanIran

Personalised recommendations