Advertisement

Oxidation of Metals

, Volume 91, Issue 1–2, pp 159–175 | Cite as

Effect of Zirconium Addition on High-Temperature Cyclic Oxidation of Diffusion Chromo-Aluminized Ni-Base Superalloy

  • Mohamed Ali ElhelalyEmail author
  • Mohamed Aziz ElZomor
  • Mohamed Hussien Ahmed
  • Ahmed Osman Youssef
Original Paper
  • 297 Downloads

Abstract

Nimonic 75 alloy was coated with two different types of coatings: chromo-aluminized coating and Zr-doped chromo-aluminized coating. Diffusion coating was carried out by pack cementation process at 1000 °C for 8 h. Cyclic oxidation tests of Nimonic 75 and its coated specimens were conducted at 900, 1000 and 1100 °C in air for a total period of 100 h. During the first 30-h period, 5-h cycle was applied, and during the 40–100-h period, 10-h cycle was applied. The structures of the coated Nimonic 75 alloy before and after high-temperature oxidation were investigated using light microscopy, scanning electron microscopy/energy-dispersive spectroscopy and X-ray diffraction characterization techniques. The results indicated that Zr-doped chromo-aluminide coating is more effective than chromo-aluminide coating in increasing the oxidation resistance of Nimonic 75 alloy. The parabolic oxidation rate constant kp for cyclic oxidation of uncoated , Cr–Al-coated and Zr/Cr–Al-coated alloys are 1.7, 0.77 and 0.61 10−6 mg2 cm−4 s−1 at 900 °C, and 10.08, 5.2 and 3.91 10−6 mg2 cm−4 s−1 at 1000 °C, and 41.27, 26.69 and 18.13 10−6 mg2 cm−4 s−1 at 1100 °C. The improvement in oxidation resistance by zirconium addition to the chromo-aluminized coating is attributed to its effect on achieving better control of interdiffusion fluxes occurring between coating and substrate so as to reduce Kirkendall effect and voids formation, hence enhancing adhesion, in addition to reducing the outward diffusion of aluminum and stabilizing aluminum oxide scale.

Keywords

Nimonic 75 Pack cementation process Zr/chromo-aluminized coating Cyclic oxidation Superalloys Diffusion coating 

References

  1. 1.
    S. M. Jiang, H. Q. Li, J. Ma, C. Z. Xu, J. Gong and C. Sun, Corrosion Science 52, 2010 (2316).CrossRefGoogle Scholar
  2. 2.
    R. Burgel, Materials Science Technology 2, 1986 (302).CrossRefGoogle Scholar
  3. 3.
    K. Shirvani and M. Saremi, Corrosion Science 45, 2003 (1011).CrossRefGoogle Scholar
  4. 4.
    W. Fuhui, L. Hanyi, B. Linxiang and W. Weitao, Materials Science and Engineering A 121, 1989 (387).CrossRefGoogle Scholar
  5. 5.
    B. Gleeson, W. H. Cheung, W. Da Costa and D. J. Young, Oxidation of Metals 38, 1992 (407).CrossRefGoogle Scholar
  6. 6.
    Y. R. He, R. A. Rapp and P. F. Tortorelli, Materials Science and Engineering: A 222, 1997 (109).CrossRefGoogle Scholar
  7. 7.
    H. W. Hsu and W. T. Tsai, Materials Chemistry and Physics 64, 2000 (147).CrossRefGoogle Scholar
  8. 8.
    C. Zhou, H. Xu, S. Gong, Y. Yang and K. Y. Kim, Surface and Coatings Technology 132, 2000 (117).CrossRefGoogle Scholar
  9. 9.
    C. H. Koo and T. H. Yu, Surface and Coatings Technology 126, 2000 (171).CrossRefGoogle Scholar
  10. 10.
    J. Müller, M. Schierling, E. Zimmermann and D. Neuschütz, Surface and Coatings Technology 120–121, 1999 (16).CrossRefGoogle Scholar
  11. 11.
    A. J. Rasmussen, A. Agüero, M. Gutierrez and M. L. J. Östergaard, Surface and Coatings Technology 202, 2008 (1479).CrossRefGoogle Scholar
  12. 12.
    D. Degout, F. Kassabji and P. Fauchais, Plasma Chemistry and Plasma Process 4, 1984 (179).CrossRefGoogle Scholar
  13. 13.
    J. A. Haynes, E. D. Rigney, M. K. Ferber and W. D. Porter, Surface and Coatings Technology 86–87, 1996 (102).CrossRefGoogle Scholar
  14. 14.
    Z.D. Xiang, P.K. Datta, Materials Science and Engineering A, 136 (2003).Google Scholar
  15. 15.
    S. Wöllmer, S. Zaefferer, M. Göken, T. Mack and U. Glatzel, Surface and Coatings Technology 167, 2003 (83–96).CrossRefGoogle Scholar
  16. 16.
    Z. D. Xiang, J. S. Burnell-Gray and P. K. Datta, Journal of Materials Science 36, 2001 (5673).CrossRefGoogle Scholar
  17. 17.
    A. Lasalmonie, Intermetallics 14, 2006 (1123).CrossRefGoogle Scholar
  18. 18.
    V. N. Simonov and M. A. Khasyanov, Metal Science and Heat Treatment 40, 1998 (402).CrossRefGoogle Scholar
  19. 19.
    I. Khakpour, R. Soltani and M. H. Sohi, Procedia Materials Science 11, 2015 (515).CrossRefGoogle Scholar
  20. 20.
    S. Hamadi, M. P. Bacos, M. Poulain, A. Seyeux, V. Maurice and P. Marcus, Surface and Coatings Technology 204, 2009 (756).CrossRefGoogle Scholar
  21. 21.
    M. Zagula-Yavorska, J. Morgiel, J. Romanowska and J. Sieniawski, Materials Letters 139, 2015 (P50).CrossRefGoogle Scholar
  22. 22.
    L. Wei, H. Peng, F. Jia, L. Zheng, S. Gong and H. Guo, Surface and Coatings Technology 276, 2015 (721).CrossRefGoogle Scholar
  23. 23.
    R. Sitek, P. Kwaśniak, M. Sopicka-Lizer and J. Borysiuk, Intermetallics 74, 2016 (15).CrossRefGoogle Scholar
  24. 24.
    T.B. Massalski, Binary Alloy Phase Diagrams (2nd edn), American Society for Metals, Metals Park, p. 104 (1987).Google Scholar
  25. 25.
    P. Ren, S. Zhu and F. Wang, Corrosion Science 99, 2015 (1).CrossRefGoogle Scholar
  26. 26.
    G. Bozzolo, R. Noebe and F. Honecy, Intermetallics 8, 2000 (7).CrossRefGoogle Scholar
  27. 27.
    C. Salmon, D. Tiberghien, R. Molins, et al., Materials at High Temperatures 17, 2000 (271).CrossRefGoogle Scholar
  28. 28.
    C. H. Koo, C. Y. Bai and Y. J. Luo, Materials Chemistry and Physics 86, 2004 (258).CrossRefGoogle Scholar
  29. 29.
    C. A. Barrett, A. S. Khan and C. E. Lowell, Journal of Electrochemical Society 128, 1981 (25).CrossRefGoogle Scholar
  30. 30.
    C. A. Barrett, Oxidation of Metals 30, 1988 (361).CrossRefGoogle Scholar
  31. 31.
    Q. Fan, H. Yu, T. Wang, Z. Wu and Y. Liu, Coatings 8, 2018 (1).CrossRefGoogle Scholar
  32. 32.
    A. Engstrom, J. Bratberg, Q. Chen, L. Hoglund and P. Mason, Advanced Materials Research 278, 2011 (198).CrossRefGoogle Scholar
  33. 33.
    W. Zhou, Y. G. Zhao, W. Li, B. Tian, S. W. Hu and Q. D. Qin, Materials Science and Engineering A 458, 2007 (34).CrossRefGoogle Scholar
  34. 34.
    B. A. Pint and L. W. Hobbs, Oxidation of Metals 61, 2004 (273).CrossRefGoogle Scholar
  35. 35.
    R. Cueff, H. Buscail, E. Caudron, C. Issartel and F. Riffard, Corrosion Science 45, 2003 (1815).CrossRefGoogle Scholar
  36. 36.
    W. Wang, P. Yu, F. Wang and S. Zhu, Surface and Coatings Technology 201, 2007 (7425).CrossRefGoogle Scholar
  37. 37.
    N. Vialas and D. Monceau, Surface and Coatings Technology 201, 2006 (3846).CrossRefGoogle Scholar
  38. 38.
    D. Larson and M. K. Miller, Materials Characterization 44, 2000 (159).CrossRefGoogle Scholar
  39. 39.
    Z.D Xiang., P.K. Datta, Journal of Materials Science 38, 3721 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed Ali Elhelaly
    • 1
    Email author
  • Mohamed Aziz ElZomor
    • 1
  • Mohamed Hussien Ahmed
    • 1
  • Ahmed Osman Youssef
    • 2
  1. 1.Heat Treatment DepartmentTabbin Institute for Metallurgical StudiesCairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAins Shams UniversityCairoEgypt

Personalised recommendations