Oxidation of Metals

, Volume 91, Issue 1–2, pp 113–129 | Cite as

Oxidation Behavior of Superalloy IN 713 Fabricated by Metal Injection Molding

  • Naicheng ShengEmail author
  • Katharina Horke
  • Andreas Meyer
  • Ralf Rettig
  • Robert F. Singer
Original Paper


The oxidation behavior of superalloy IN 713 fabricated by metal injection molding (MIM) was investigated and compared with standard cast material plus hot isostatic pressing (Cast + HIP). The carbon content of MIM alloys varied in the experiments due to the use of different starting powders. At all temperatures and times investigated, weight gain increased strongly with carbon content. Carbon in the alloys was present mainly in the form of carbides. Carbides react with oxygen during oxide scale formation. Microscopy showed that selective oxidation of carbides led to the formation of protrusions and cracks in the oxide layer. In this way, the protective effect of the oxide scale was weakened.


Superalloys Oxidation Metal injection molding IN 713LC Carbides 



The authors acknowledge funding by Rolls-Royce Germany. The work was done within the framework of the project RHinnoVer (Funding Code: 20T1111). The authors gratefully acknowledge the Bundesministerium für Wirtschaft und Energie (BMWi for the financial support). We would also like to acknowledge Prof. Virtanen and Mr. Martin Weiser from the Institute of Surface Science and Corrosion at the Department of Materials Science and Engineering (University of Erlangen-Nuremberg) for the kind help in performing the oxidation experiments at 1000 °C and 1100 °C and valuable suggestions on the paper. We acknowledge the technical staff in WTM for the help during the oxidation experiments and metallography analysis process.


  1. 1.
    C. T. Sims, N. S. Stoloff, and W. C. Hagel, Superalloys II, (Wiley-Interscience, New York, 1987).Google Scholar
  2. 2.
    R. C. Reed, The Superalloys: Fundamentals and Applications, (Cambridge University Press, 2008).Google Scholar
  3. 3.
    J. Zhang and R. Singer, Acta Materialia 50, 1869 (2002).CrossRefGoogle Scholar
  4. 4.
    Y. Zhou, A. Volek, and R. F. Singer, Metallurgical and Materials Transactions A 36, 651 (2005).CrossRefGoogle Scholar
  5. 5.
    R. Rettig, N. C. Ritter, F. Müller, M. M. Franke, and R. F. Singer, Metallurgical and Materials Transactions A 46, 5842 (2015).CrossRefGoogle Scholar
  6. 6.
    P. Caron and T. Khan, Aerospace Science and Technology 3, 513 (1999).CrossRefGoogle Scholar
  7. 7.
    G. Gessinger and M. Bomford, International Metallurgical Reviews 19, 51 (2013).Google Scholar
  8. 8.
    A. Basak, R. Acharya, and S. Das, Metallurgical and Materials Transactions A 47, 3845 (2016).CrossRefGoogle Scholar
  9. 9.
    M. Ramsperger, R. F. Singer, and C. Körner, Metallurgical and Materials Transactions A 47, 1469 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Meyer, E. Daenicke, K. Horke, M. Moor, S. Müller, I. Langer, and R. Singer, Powder Metallurgy 59, 51 (2016).CrossRefGoogle Scholar
  11. 11.
    H. Ö. Gülsoy, Ö. Özgün, and S. Bilketay, Materials Science and Engineering: A 651, 914 (2016).CrossRefGoogle Scholar
  12. 12.
    F. Johannaber, Injection Molding Machines: A User’s Guide, (Carl Hanser Verlag GmbH Co KG, 2016).Google Scholar
  13. 13.
    J. Brenneman, J. Wei, Z. Sun, L. Liu, G. Zou, and Y. Zhou, Corrosion Science 100, 267 (2015).CrossRefGoogle Scholar
  14. 14.
    A. Sato, Y.-L. Chiu, and R. Reed, Acta Materialia 59, 225 (2011).CrossRefGoogle Scholar
  15. 15.
    K. A. Al-Hatab, M. Al-Bukhaiti, U. Krupp, and M. Kantehm, Oxidation of Metals 75, 209 (2011).CrossRefGoogle Scholar
  16. 16.
    C. Giggins and F. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).CrossRefGoogle Scholar
  17. 17.
    R. Molins, G. Hochstetter, J. Chassaigne, and E. Andrieu, Acta Materialia 45, 663 (1997).CrossRefGoogle Scholar
  18. 18.
    B. Albert, R. Völkl, and U. Glatzel, Metallurgical and Materials Transactions A 45, 4561 (2014).CrossRefGoogle Scholar
  19. 19.
    H. R. Jiang, M. Hirohasi, Y. Lu, and H. Imanari, Scripta Materialia 46, 639 (2002).CrossRefGoogle Scholar
  20. 20.
    J. Russell and R. Cohn, Ellingham Diagram, (Bookvika Publishing, 2012).Google Scholar
  21. 21.
    J. Litz, A. Rahmel, and M. Schorr, Oxidation of Metals 30, 95 (1988).CrossRefGoogle Scholar
  22. 22.
    J. J. Valencia, J. Spirko, and R. Schmees, in Superalloy 718, 625, 716 and Various Derivatives, (1997), p. 625.Google Scholar
  23. 23.
    Ö. Özgün, H. Ö. G. Gülsoy, R. Yilmaz, and F. Findik, Journal of Alloys and Compounds 54, 192 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander University of Erlangen-Nuremberg (FAU)FürthGermany
  2. 2.Rolls-Royce Deutschland Ltd & Co. KGBlankenfelde-MahlowGermany
  3. 3.Chair of Materials Science and Engineering for Metals (WTM)Friedrich-Alexander University of Erlangen-Nuernberg (FAU)ErlangenGermany
  4. 4.ThermoCalc Software ABStockholmSweden

Personalised recommendations