Advertisement

Oxidation of Metals

, Volume 90, Issue 5–6, pp 617–631 | Cite as

Improving the High-Temperature Oxidation Resistance of TiAl Alloy by Anodizing in Methanol/NaF Solution

  • Lian-Kui Wu
  • Jun-Jie Xia
  • Hua-Zhen Cao
  • Wen-Juan Liu
  • Guang-Ya Hou
  • Yi-Ping Tang
  • Guo-Qu Zheng
Original Paper
  • 75 Downloads

Abstract

An aluminum- and fluorine-enriched anodic film was fabricated on TiAl alloy by anodizing in NaF-contained methanol solution. The high-temperature oxidation resistance and protection mechanism of the anodized TiAl alloy were investigated. It showed that the formation of aluminum-enriched oxide scale originates from halogen effect and quite small anodization current density is essential to improving the high-temperature oxidation resistance. Upon oxidation at 850 °C for 100 h, no cracks and/or spallation were exhibited on the anodized TiAl alloy. At temperature higher than 300 °C, titanium fluoride will sublimate, accompanying with the transformation of aluminum fluoride into protective Al2O3 layer, as was indicated by XPS analysis. This freshly generated Al2O3 layer, together with the anodization formed one, can efficiently inhibit the outward diffusion of Al and inward diffusion of oxygen, thereby improving the high-temperature oxidation resistance of the TiAl.

Keywords

Anodization TiAl High-temperature oxidation Halogen effect 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51501163, 51501089), Natural Science Foundation of Zhejiang Province (No. LY18E010005), Talent Project of Zhejiang Association for Science and Technology (No. 2017YCGC015), and Natural Science Foundation of Zhejiang University of Technology (No. 2014XZ008).

References

  1. 1.
    Y.-W. Kim, Acta Metallurgica et Materialia 40, 1992 (1121).CrossRefGoogle Scholar
  2. 2.
    D. M. Dimiduk, Materials Science and Engineering A 263, 1999 (281).CrossRefGoogle Scholar
  3. 3.
    H. Clemens and S. Mayer, Advanced Engineering Materials 15, 2013 (191).CrossRefGoogle Scholar
  4. 4.
    R. Pflumm, S. Friedle and M. Schuetze, Intermetallics 56, 2015 (1).CrossRefGoogle Scholar
  5. 5.
    D. W. McKee and S. C. Huang, Corrosion Science 33, 1992 (1899).CrossRefGoogle Scholar
  6. 6.
    S. Becker, A. Rahmel, M. Schorr and M. Schütze, Oxidation of Metals 38, 1992 (425).CrossRefGoogle Scholar
  7. 7.
    F. Dettenwanger, E. Schumann, M. Ruhle, J. Rakowski and G. H. Meier, Oxidation of Metals 50, 1998 (269).CrossRefGoogle Scholar
  8. 8.
    M. Schmitz-Niederau and M. Schutze, Oxidation of Metals 52, 1999 (225).CrossRefGoogle Scholar
  9. 9.
    V. Shemet, A. K. Tyagi, J. S. Becker, P. Lersch, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 54, 2000 (211).CrossRefGoogle Scholar
  10. 10.
    F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Mullauer, M. Oehring and J. D. H. Paul, Advanced Engineering Materials 2, 2000 (699).CrossRefGoogle Scholar
  11. 11.
    C. Wang, W. Wang, S. Zhu and F. Wang, Corrosion Science 76, 2013 (284).CrossRefGoogle Scholar
  12. 12.
    E. Dong, W. Yu, Q. Cai, L. Cheng and J. Shi, Oxidation of Metals 1, 2017 (1).Google Scholar
  13. 13.
    B. G. Kim, G. M. Kim and C. J. Kim, Scripta Metallurgica et Materialia 33, 1995 (1117).CrossRefGoogle Scholar
  14. 14.
    Y. Shida and H. Anada, Oxidation of Metals 45, 1996 (197).CrossRefGoogle Scholar
  15. 15.
    J. W. Fergus, Materials Science and Engineering A 338, 2002 (108).CrossRefGoogle Scholar
  16. 16.
    M. Naveed, A. F. Renteria and S. Weiß, Journal of Alloys and Compounds 691, 2017 (489).CrossRefGoogle Scholar
  17. 17.
    A. Kanjer, V. Optasanu, L. Lavisse, M. D. C. Marco de Lucas, S. Dejardin, M. François, P. Berger, P. Peyre, C. Gorny and T. Montesin, Oxidation of Metals 88, 2017 (383).CrossRefGoogle Scholar
  18. 18.
    H. G. Jung and K. Y. Kim, Oxidation of Metals 58, 2002 (197).CrossRefGoogle Scholar
  19. 19.
    H. Jiang, M. Hirohasi, Y. Lu and H. Imanari, Scripta Materialia 46, 2002 (639).CrossRefGoogle Scholar
  20. 20.
    J. P. Lin, L. L. Zhao, G. Y. Li, L. Q. Zhang, X. P. Song, F. Ye and G. L. Chen, Intermetallics 19, 2011 (131).CrossRefGoogle Scholar
  21. 21.
    R. Pflumm, A. Donchev, S. Mayer, H. Clemens and M. Schütze, Intermetallics 53, 2014 (45).CrossRefGoogle Scholar
  22. 22.
    X. Gong, R. R. Chen, Y. H. Yang, Y. Wang, H. S. Ding, J. J. Guo, Y. Q. Su and H. Z. Fu, Applied Surface Science 431, 2018 (81).CrossRefGoogle Scholar
  23. 23.
    S. Taniguchi, T. Kuwayama, Y. C. Zhu, Y. Matsumoto and T. Shibata, Materials Science and Engineering A 277, 2000 (229).CrossRefGoogle Scholar
  24. 24.
    X. Y. Li, S. Taniguchi, Y. Matsunaga, K. Nakagawa and K. Fujita, Intermetallics 11, 2003 (143).CrossRefGoogle Scholar
  25. 25.
    Y. Wu, K. Hagihara and Y. Umakoshi, Intermetallics 12, 2004 (519).CrossRefGoogle Scholar
  26. 26.
    X. Gong, R. R. Chen, H. Z. Fang, H. S. Ding, J. J. Guo, Y. Q. Su and H. Z. Fu, Corrosion Science 131, 2018 (376).CrossRefGoogle Scholar
  27. 27.
    M. Hadi, O. Bayat, M. Meratian, A. Shafyei and I. Ebrahimzadeh, Oxidation of Metals 1, 2018 (1).Google Scholar
  28. 28.
    U. Hornauer, R. Günzel, H. Reuther, E. Richter, E. Wieser, W. Möller, G. Schumacher, F. Dettenwanger and M. Schütze, Surface and Coatings Technology 125, 2000 (89).CrossRefGoogle Scholar
  29. 29.
    M. Schütze, G. Schumacher, F. Dettenwanger, U. Hornauer, E. Richter, E. Wieser and W. Möller, Corrosion Science 44, 2002 (303).CrossRefGoogle Scholar
  30. 30.
    S. Chevalier, C. Nivot and J. P. Larpin, Oxidation of Metals 61, 2004 (195).CrossRefGoogle Scholar
  31. 31.
    M. S. Chu and S. K. Wu, Acta Materialia 51, 2003 (3109).CrossRefGoogle Scholar
  32. 32.
    M. S. Chu and S. K. Wu, Oxidation of Metals 63, 2005 (1).CrossRefGoogle Scholar
  33. 33.
    T. Moskalewicz, F. Smeacetto, G. Cempura, L. C. Ajitdoss, M. Salvo and A. Czyrska-Filemonowicz, Surface and Coatings Technology 204, 2010 (3509).CrossRefGoogle Scholar
  34. 34.
    Q. M. Wang, R. Mykhaylonka, A. Flores Renteria, J. L. Zhang, C. Leyens and K. H. Kim, Corrosion Science 52, 2010 (3793).CrossRefGoogle Scholar
  35. 35.
    Z. G. Zhang, Y. P. Peng, Y. L. Mao, C. J. Pang and L. Y. Lu, Corrosion Science 55, 2012 (187).CrossRefGoogle Scholar
  36. 36.
    J. Małecka, Corrosion Science 63, 2012 (287).CrossRefGoogle Scholar
  37. 37.
    W. Li, M. Chen, M. Wu, S. Zhu, C. Wang and F. Wang, Corrosion Science 87, 2014 (179).CrossRefGoogle Scholar
  38. 38.
    S. Friedle, N. Laska, R. Braun, H.-E. Zschau, M. C. Galetz and M. Schütze, Corrosion Science 92, 2015 (280).CrossRefGoogle Scholar
  39. 39.
    X. Li, J. Tian, W. Tian, X. Li and W. Xie, Oxidation of Metals 89, 2018 (471).CrossRefGoogle Scholar
  40. 40.
    J. Bermejo Sanz, R. Roussel García, V. Kolarik and M. D. M. Juez Lorenzo, Oxidation of Metals 88, 2017 (179).CrossRefGoogle Scholar
  41. 41.
    Z. Jiang, X. Yang, Y. Liang, G. Hao, H. Zhang and J. Lin, Surface and Coatings Technology 333, 2018 (187).CrossRefGoogle Scholar
  42. 42.
    A. Donchev, E. Richter, M. Schütze and R. Yankov, Intermetallics 14, 2006 (1168).CrossRefGoogle Scholar
  43. 43.
    P. J. Masset and M. Schütze, Advanced Engineering Materials 10, 2008 (666).CrossRefGoogle Scholar
  44. 44.
    A. Donchev, J. Grüters, M. Galetz and M. Schütze, Advances in Materials and Processing Technologies 2, 2016 (471).CrossRefGoogle Scholar
  45. 45.
    S. Friedle, R. Pflumm, A. Seyeux, P. Marcus and M. Schütze, Oxidation of Metals 89, 2017 (123).CrossRefGoogle Scholar
  46. 46.
    S. Friedle, R. Pflumm, A. Seyeux, P. Marcus and M. Schütze, Oxidation of Metals 89, 2018 (123).CrossRefGoogle Scholar
  47. 47.
    A. Donchev, B. Gleeson and M. Schütze, Intermetallics 11, 2003 (387).CrossRefGoogle Scholar
  48. 48.
    L. Xin, G. Shao, F. Wang, P. Tsakiropoulos and T. Li, Intermetallics 11, 2003 (651).CrossRefGoogle Scholar
  49. 49.
    H. E. Zschau, M. Schütze, H. Baumann and K. Bethge, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 240, 2005 (137).CrossRefGoogle Scholar
  50. 50.
    A. Gil, Z. Żurek, A. Stawiarski and J. Dąbek, Advanced Materials Research 347–353, 2012 (3514).Google Scholar
  51. 51.
    S. Friedle, N. Nießen, R. Braun and M. Schütze, Surface and Coatings Technology 212, 2012 (72).CrossRefGoogle Scholar
  52. 52.
    A. Donchev, H. E. Zschau and M. Schütze, Materials at High Temperatures 22, 2005 (309).CrossRefGoogle Scholar
  53. 53.
    S. Neve, P. J. Masset, R. A. Yankov, A. Kolitsch, H.-E. Zschau and M. Schütze, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 268, 2010 (3381).CrossRefGoogle Scholar
  54. 54.
    X. Y. Li and S. Taniguchi, Materials Science and Engineering A 398, 2005 (268).CrossRefGoogle Scholar
  55. 55.
    P. J. Masset, S. Neve, H. E. Zschau and M. Schütze, Materials and Corrosion 59, 2008 (609).CrossRefGoogle Scholar
  56. 56.
    A. Donchev and M. Schütze, Mater Sci Forum, (Trans Tech Publ., New York, 2004), p. 447.Google Scholar
  57. 57.
    M.-H. Mo, L.-K. Wu, H.-Z. Cao, J.-P. Lin, D.-H. Lu and G.-Q. Zheng, Surface and Coatings Technology 307, 2016 (190).CrossRefGoogle Scholar
  58. 58.
    M.-H. Mo, L.-K. Wu, H.-Z. Cao, J.-P. Lin and G.-Q. Zheng, Surface and Coatings Technology 286, 2016 (215).CrossRefGoogle Scholar
  59. 59.
    M.-H. Mo, L.-K. Wu, H.-Z. Cao, J.-P. Lin and G.-Q. Zheng, Applied Surface Science 407, 2017 (246).CrossRefGoogle Scholar
  60. 60.
    L.-K. Wu, W.-Y. Wu, J.-L. Song, G.-Y. Hou, H.-Z. Cao, Y.-P. Tang and G.-Q. Zheng, Corrosion Science 140, 2018 (388).CrossRefGoogle Scholar
  61. 61.
    V. Maurice, G. Despert, S. Zanna, P. Josso, M. P. Bacos and P. Marcus, Acta Materialia 55, 2007 (3315).CrossRefGoogle Scholar
  62. 62.
    J. L. G. Fierro and L. G. Tejuca, Applied Surface Science 27, 1987 (453).CrossRefGoogle Scholar
  63. 63.
    M. Miyake, S. Tajikara and T. Hirato, Surface and Coatings Technology 205, 2011 (5141).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations