Advertisement

Oxidation of Metals

, Volume 90, Issue 1–2, pp 217–235 | Cite as

Surface Studies of T409 Stainless Steel at 700 °C in Wet or Dry Air or N2 With and Without Contacting Ceramic Fibers

  • G. Tatar
  • P. Gannon
  • N. Swain
  • E. Remington
  • S. Dansereau
Original Paper
  • 122 Downloads

Abstract

Ferritic stainless steel (FSS) is widely used in high-temperature (> 500 °C) applications, often in contact with various ceramic components, e.g. solid oxide fuel cell systems, combustion exhaust systems, and in various chemical process and balance-of-plant equipment. To expand current understanding of the corrosion behaviors of stainless steels in these applications, FSS T409 was investigated after 700 °C exposures (94 h) to dry or wet air or N2, and with or without contacting aluminosilicate fibers. Surface compositions and structures were characterized using FESEM, EDS, and XRD. The fibers were observed to have a substantial impact on corrosion behaviors, likely serving as a mass transport barrier for corrosive gas species. Observed corrosion behaviors under these different environments and their potential mechanisms are presented and discussed. Additionally, quantification of total chromium content on contacting fibers was performed using ICP-MS. Contacting fibers were only observed to collect chromium in dry/moist air consistent with the formation of volatile chromium species CrO3 and CrO2(OH)2, respectively.

Keywords

Stainless steel Oxidation Ceramics Contacting conditions Atmospheres containing water vapor 

Notes

Acknowledgments

Morgan Advanced Materials for providing materials, ICAL staff for assistance with surface analyses, and Energy Laboratories for performing ICP-MS.

References

  1. 1.
    H. E. Evans and R. C. Lobb, Corrosion Science 24, 209 (1984).CrossRefGoogle Scholar
  2. 2.
    H. E. Evans, International Materials Reviews 40, 1 (1995).CrossRefGoogle Scholar
  3. 3.
    J. W. Fergus, International Journal of Hydrogen Energy 32, 3664 (2007).CrossRefGoogle Scholar
  4. 4.
    J. Froitzheim, E. Larsson, L.-G. Johansson and J.-E. Svensson, ECS Transactions 25, 1423 (2009).CrossRefGoogle Scholar
  5. 5.
    S. P. Jiang and X. Chen, International Journal of Hydrogen Energy 39, 505 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Stanislowski, J. Froitzheim, L. Niewolak, W. J. Quadakkers, K. Hilpert, T. Markus and L. Singheiser, Journal of Power Sources 164, 578 (2007).CrossRefGoogle Scholar
  7. 7.
    E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky, and M. D. Allendrof, ChemInform 38, (2007).Google Scholar
  8. 8.
    K. Hilpert, D. Das, M. Miller, D. H. Peck, and R. Weiss, ChemInform 28, no (1997).Google Scholar
  9. 9.
    B. A. Pint, Oxidation of Metals 45, 1 (1996).CrossRefGoogle Scholar
  10. 10.
    W. Qu, L. Jian, D. G. Ivey and J. M. Hill, Journal of Power Sources 157, 335 (2006).CrossRefGoogle Scholar
  11. 11.
    H. Ullmann and N. Trofimenko, Solid State Ionics 119, 1 (1999).CrossRefGoogle Scholar
  12. 12.
    Z. Yang, G.-G. Xia, G. D. Maupin and J. W. Stevenson, Journal of The Electrochemical Society 153, A1852 (2006).CrossRefGoogle Scholar
  13. 13.
    Z. Yang, G. Xia and J. W. Stevenson, Electrochemical and Solid-State Letters 8, A168 (2005).CrossRefGoogle Scholar
  14. 14.
    Z. Yang, G.-G. Xia, X.-H. Li and J. W. Stevenson, International Journal of Hydrogen Energy 32, 3648 (2007).CrossRefGoogle Scholar
  15. 15.
    N. Shaigan, W. Qu, D. G. Ivey and W. Chen, Journal of Power Sources 195, 1529 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Bagheri and M. Guagliano, Surface Engineering 25, 3 (2009).CrossRefGoogle Scholar
  17. 17.
    G. Y. Lau, M. C. Tucker, C. P. Jacobson, S. J. Visco, S. H. Gleixner and L. C. DeJonghe, Journal of Power Sources 195, 7540 (2010).CrossRefGoogle Scholar
  18. 18.
    Z. G. Yang, K. D. Meinhardt, and J. W. Stevenson, Journal of the Electrochemical Society, 150, A1095 (2003).Google Scholar
  19. 19.
    T. Zhang, R. K. Brow, W. G. Fahrenholtz and S. T. Reis, Journal of Power Sources 205, 301 (2012).CrossRefGoogle Scholar
  20. 20.
    L. Cooper, S. Benhaddad, A. Wood and D. G. Ivey, Journal of Power Sources 184, 220 (2008).CrossRefGoogle Scholar
  21. 21.
    P. Alnegren, M. Sattari, J.-E. Svensson and J. Froitzheim, Journal of Power Sources 301, 170 (2016).CrossRefGoogle Scholar
  22. 22.
    K. Segerdahl, J.-E. Svensson and L.-G. Johansson, Materials and Corrosion 53, 247 (2002).CrossRefGoogle Scholar
  23. 23.
    K. Segerdahl, J. E. Svensson, M. Halvarsson, I. Panas and L. G. Johansson, Materials at High Temperatures 22, 69 (2005).Google Scholar
  24. 24.
    H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).CrossRefGoogle Scholar
  25. 25.
    G. R. Holcomb and D. E. Alman, Scripta Materialia 54, 1821 (2006).CrossRefGoogle Scholar
  26. 26.
    D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, New York, 2016).Google Scholar
  27. 27.
    Z. Yang, M. S. Walker, P. Singh, J. W. Stevenson and T. Norby, Journal of The Electrochemical Society 151, B669 (2004).CrossRefGoogle Scholar
  28. 28.
    J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).CrossRefGoogle Scholar
  29. 29.
    A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J. P. Petit and L. Antoni, Materials at High Temperatures 22, 105 (2005).CrossRefGoogle Scholar
  30. 30.
    G. A. Parks, Chemical Reviews 65, 177 (1965).CrossRefGoogle Scholar
  31. 31.
    F. Liu, J. E. Tang, T. Jonsson, S. Canovic, K. Segerdahl, J. E. Svensson and M. Halvarsson, Oxidation of Metals 66, 295 (2006).CrossRefGoogle Scholar
  32. 32.
    F. Liu, J. E. Tang, H. Asteman, J. E. Svensson, L. G. Johansson and M. Halvarsson, Oxidation of Metals 71, 77 (2008).Google Scholar
  33. 33.
    M. Halvarsson, J. E. Tang, H. Asteman, J. E. Svensson and L. G. Johansson, Corrosion Science 48, 2014 (2006).CrossRefGoogle Scholar
  34. 34.
    T. Ohta, Energy Carriers and Conversion Systems with Emphasis on Hydrogen. Vol. 1 (Eolss Publishers Co Ltd, 2009).Google Scholar
  35. 35.
    J. Żurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 63, 401 (2005).Google Scholar
  36. 36.
    G. M. Raynaud and R. A. Rapp, Oxidation of Metals 21, 89 (1984).CrossRefGoogle Scholar
  37. 37.
    N. Jiang and J. Silcox, Journal of Applied Physics 87, 3768 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical EngineeringMontana State UniversityBozemanUSA
  2. 2.Mechanical EngineeringMontana State UniversityBozemanUSA

Personalised recommendations