Advertisement

Oxidation of Metals

, Volume 90, Issue 1–2, pp 203–215 | Cite as

Influence of Low Oxygen Content on the Recrystallization Behavior of Rolled Copper Foil

  • Hongliang Zhao
  • Wenbo Chen
  • Mingwei Wu
  • Rongping Li
  • Xianglei Dong
Original Paper
  • 104 Downloads

Abstract

In this paper, the influence of low oxygen content on the recrystallization of rolled copper foil was studied at different annealing temperatures. The results showed that the recrystallization temperature decreases with an increase in the oxygen content in the foil. Significant transition points occur when the oxygen content exceeds 30 ppm. The oxygen simultaneously affects particle aggregation on the grain boundaries and the dislocation mobility during deformation processes, modulating the recrystallization. A higher oxygen content enables a lower value of the recrystallization temperature, which can in turn effectively enhance plasticity to improve the forming property of the copper foil. It is expected that our investigations on the recrystallization of copper foil can provide a mechanism-based interpretation and technical support for the production optimization and application of copper-based materials.

Keywords

Rolled copper foil Oxygen content Recrystallization Microstructure and properties Process optimization 

References

  1. 1.
    M. Xu and H. D. Dewald, Electrochimica Acta 50, 2005 (5473).CrossRefGoogle Scholar
  2. 2.
    S. Anandan, X. Wen and S. Yang, Materials Chemistry and Physics 93, 2005 (35).CrossRefGoogle Scholar
  3. 3.
    D. H. Liu, Y. M. Liao, J. E. Zhang and H. B. Zhu, Heat Treatment 27, 2012 (14).Google Scholar
  4. 4.
    T. Hatano, Y. Kurosawa and J. Miyake, Journal of Electronic Materials 29, 2000 (611).CrossRefGoogle Scholar
  5. 5.
    J. Li, X. Y. Wang, X. R. Liu, Z. Jin and D. Wang, Journal of Materials Chemistry C 3, 2015 (3530).CrossRefGoogle Scholar
  6. 6.
    K. Kondo and H. Murakami, Journal of the Electrochemical Society 151, 2004 (C514).CrossRefGoogle Scholar
  7. 7.
    Y. K. Liu, X. Xu and X. E. Tang, Printed Circuit Information 10, 2009 (31).Google Scholar
  8. 8.
    Y. L. Lu, Y. Xiang and S. Zhang, Printed Circuit Information 10, 2014 (39).Google Scholar
  9. 9.
    X. M. Li, Shanghai Nonferrous Metals 3, 2010 (009).Google Scholar
  10. 10.
    J. T. Tian, Shanghai Nonferrous Metals 35, 2014 (170).Google Scholar
  11. 11.
    H. Wu, S. R. Desai and L. S. Wang, The Journal of Physical Chemistry A 101, 1997 (2103).CrossRefGoogle Scholar
  12. 12.
    N. Ravichandran and Y. Prasad, Materials Science and Engineering A 156, 1992 (195).CrossRefGoogle Scholar
  13. 13.
    T. Yan, Y. S. Zhang and S. L. Chen, Journal of University of Science & Technology Beijing 34, 2012 (21).Google Scholar
  14. 14.
    Y. N. Yu, Principles of metallography, Metallurgical Industry Press (2013).Google Scholar
  15. 15.
    Y. Prasad and K. P. Rao, Materials Letters 58, 2004 (2061).CrossRefGoogle Scholar
  16. 16.
    J. Cao, J. L. Fan and Z. Q. Liu, Cailiao Rechuli Xuebao/transactions of Materials & Heat Treatment 36, 2015 (95).Google Scholar
  17. 17.
    V. G. García, J. M. Cabrera and J. M. Prado, Materials Science Forum 558–559, 2007 (511).CrossRefGoogle Scholar
  18. 18.
    Y. Prasad and K. P. Rao, Journal of engineering materials and technology 128, 2006 (158).CrossRefGoogle Scholar
  19. 19.
    A. Rollett, F. J. Humphreys and G. S. Rohrer, Recrystallization and related annealing phenomena, (Elsevier, Pergamon, 2004).Google Scholar
  20. 20.
    S. Tian, H. Yu and X. Geng, Journal of Iron and Steel Research 15, 2003 (42).Google Scholar
  21. 21.
    S. Lv, S. Chen, X. Mao, X. Wang, D. Zhu and X. Huo, Iron Steel Vanadium Titanium 2, 2011 (014).Google Scholar
  22. 22.
    B. W. Wang, T. Wang and Z. T. Wang, Copper Alloys and Their Processing Technologies, Chemical Industry Press (2007).Google Scholar
  23. 23.
    J. P. Zhao, Y. G. Hu, W. H. Liu, J. P. Zhou and Y. Z. Wang, Mining and Metallurgical Engineering 30, 2010 (99).Google Scholar
  24. 24.
    A. Lamberti, M. Fontana, S. Bianco and E. Tresso, International Journal of Hydrogen Energy 41, 2016 (11700).CrossRefGoogle Scholar
  25. 25.
    L. Yan, The effect of deformation and heat treatment on microstructure and properties of copper and copper alloy, Jiangsu University of Science and Technology (2012).Google Scholar
  26. 26.
    J. L. Xu and L. S. Yu, Nonferrous Metals Processing 44, 2015 (17).Google Scholar
  27. 27.
    E. J. Mittemeijer, Fundamentals of Materials Science, (Springer, Berlin, 2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.Lingbao Jinyuan Zhaohui Copper Co., LtdLingbaoChina

Personalised recommendations