Oxidation of Metals

, Volume 90, Issue 1–2, pp 169–186 | Cite as

Hot Corrosion Behavior of Inconel 625 Superalloy in Eutectic Molten Nitrate Salts

  • S. Khorsand
  • A. Sheikhi
  • K. Raeissi
  • M. A. Golozar
Original Paper


Corrosion resistance of Inconel 625 Ni-based superalloy was studied in a molten nitrate salt consisting of 40 KNO3–60 NaNO3 (wt%) at 500 and 600 °C. Open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopy and gravimetric tests were used to evaluate the degradation mechanism and corrosion behavior of the alloy. Surface morphology and chemical analysis of corrosion products were characterized by means of scanning electron microscopy and energy-dispersive X-ray spectrometry. The weight-loss curves showed that with the increase in temperature, the oxidation rate and mass gain increased; the relationship between the mass gain and time was close to the parabolic oxidation law. The electrochemical corrosion results confirmed that during the exposure of Inconel 625 alloy to the molten salts, nickel dissolves as a result of non-protective NiO layer formed. The formation of a non-protective oxide layer with low barrier property was responsible for observing the weak corrosion resistance of the alloy at high temperatures (500 and 600 °C). Cyclic polarization tests showed a positive hysteresis confirming the nucleation and growth of stable pits on the surface of Inconel 625 at high anodic overpotentials. Sodium nitrite acts as an efficient pitting inhibitor for this case. In this way, the sodium nitrite with the concentration of 0.1 molal was found to have an optimum inhibition effect on pit nucleation at 600 °C.


Inconel 625 alloy Nitrate salts Hot corrosion Pitting corrosion Inhibitor 


  1. 1.
    N. S. Patel, V. Pavlík and M. Boča, Critical Reviews in Solid State and Materials Sciences 42, 83 (2017).CrossRefGoogle Scholar
  2. 2.
    G. McConohy and A. Kruizenga, Solar Energy 103, 242 (2014).CrossRefGoogle Scholar
  3. 3.
    A. Fernandez, M. Lasanta and F. Perez, Oxidation of Metals 78, 329 (2012).CrossRefGoogle Scholar
  4. 4.
    A. Fernández, M. Cortes, E. Fuentealba and F. Pérez, Renewable Energy 80, 177 (2015).CrossRefGoogle Scholar
  5. 5.
    A. S. Dorcheh, R. N. Durham and M. C. Galetz, Solar Energy Materials and Solar Cells. 144, 109 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Goods and R. W. Bradshaw, Journal of Materials Engineering and Performance 13, 78 (2004).CrossRefGoogle Scholar
  7. 7.
    K. D. Ramkumar, W. S. Abraham, V. Viyash, N. Arivazhagan and A. M. Rabel, Journal of Manufacturing Processes. 25, 306 (2017).CrossRefGoogle Scholar
  8. 8.
    H. Sun, X. Wu and E.-H. Han, Corrosion Science 51, 2565 (2009).CrossRefGoogle Scholar
  9. 9.
    S. E. Ziemniak and M. Hanson, Corrosion Science 45, 1595 (2003).CrossRefGoogle Scholar
  10. 10.
    N. Espallargas and S. Mischler, Tribology International 43, 1209 (2010).CrossRefGoogle Scholar
  11. 11.
    J. Adamiec, Materials Characterization 60, 1093 (2009).CrossRefGoogle Scholar
  12. 12.
    Z. Zhong, Z. Peng and N. Liu, Materials Characterization 58, 997 (2007).CrossRefGoogle Scholar
  13. 13.
    H. Al-Fadhli, J. Stokes, M. Hashmi and B. Yilbas, Surface and Coatings Technology 200, 4904 (2006).CrossRefGoogle Scholar
  14. 14.
    E. M. Zahrani and A. Alfantazi, Corrosion Science 65, 340 (2012).CrossRefGoogle Scholar
  15. 15.
    W. S. Tait, An introduction to electrochemical corrosion testing for practicing engineers and scientists, (PairODocs Publications, Racine, 1994).Google Scholar
  16. 16.
    C. Zeng, W. Wang and W. Wu, Corrosion Science 43, 787 (2001).CrossRefGoogle Scholar
  17. 17.
    D. Farrel, W. Cox, F. Stott, D. Eden, J. Dawson and G. Wood, High Temperature Technologies 3, 15 (1985).CrossRefGoogle Scholar
  18. 18.
    G. Gao, F. Stott, J. Dawson and D. Farrell, Oxidation of Metals 33, 79 (1990).CrossRefGoogle Scholar
  19. 19.
    ASTM G. G 1-03. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (American Society for Testing and Materials, Philadelphia, Pennsylvania, 2003).Google Scholar
  20. 20.
    S.-H. Cho, S.-S. Hong, D.-S. Kang, J.-M. Hur and H.-S. Lee, Metals and Materials International 15, 51 (2009).CrossRefGoogle Scholar
  21. 21.
    L. Yang, C. Y. Chien and G. Derge, The Journal of Chemical Physics 30, 1627 (1959).CrossRefGoogle Scholar
  22. 22.
    P. Wang, Y. Feng, W. Roth and J. Corbett, Journal of Non-Crystalline Solids 104, 81 (1988).CrossRefGoogle Scholar
  23. 23.
    L. Zhang, W. Zhang, J. Zhang and G. Li, Metals 6, 105 (2016).CrossRefGoogle Scholar
  24. 24.
    B. Tzaneva, L. Fachikov and R. Raicheff, Corrosion Engineering, Science and Technology 41, 62 (2006).CrossRefGoogle Scholar
  25. 25.
    A. Almarshad and D. Jamal, Journal of Applied Electrochemistry 34, 67 (2004).CrossRefGoogle Scholar
  26. 26.
    G. Wood and B. Chattopadhyay, Corrosion Science 10, 471IN1477 (1970).CrossRefGoogle Scholar
  27. 27.
    S. H. Cho, S. B. Park, J. H. Lee, J. M. Hur and H. S. Lee, Journal of Nuclear Materials 412, 157 (2011).CrossRefGoogle Scholar
  28. 28.
    G. C. Wood, Oxidation of Metals 2, 11 (1970).CrossRefGoogle Scholar
  29. 29.
    E. Mohammadi Zahrani and A. Alfantazi, Metallurgical and Materials Transactions A 43, 2857 (2012).CrossRefGoogle Scholar
  30. 30.
    A. Arvia, R. Piatti and J. Podesta, Electrochimica Acta. 17, 901 (1972).CrossRefGoogle Scholar
  31. 31.
    I. Gurrappa, I. Yashwanth, I. Mounika, H. Murakami, and S. Kuroda in Gas Turbines-Materials, Modeling and Performance (InTech, 2015).Google Scholar
  32. 32.
    A. Baraka, R. Baraka and A. Abdel-Razik, Surface Technology 26, 199 (1985).CrossRefGoogle Scholar
  33. 33.
    S. Khorsand, K. Raeissi and M. Golozar, Journal of The Electrochemical Society 158, D377 (2011).CrossRefGoogle Scholar
  34. 34.
    E. Fujioka, H. Nishihara and K. Aramaki, Corrosion Science 38, 1915 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Khorsand
    • 1
  • A. Sheikhi
    • 2
  • K. Raeissi
    • 2
  • M. A. Golozar
    • 2
  1. 1.Institute of Materials and ManufacturingBrunel University LondonUxbridgeUK
  2. 2.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations